

UNIVERSITARIO SUPERIOR UNIVERSITARIO SUPERIOR

GUÍA GENERAL DE ESTUDIO DE CIRCUITOS ELECTRICOS E INSTALACIONES ELÉCTRICAS

Guía general de estudio de circuitos eléctricos e instalaciones eléctricas.

Luis Geovanny Chilig Collaguazo.

Aníbal Roberto Pérez Checa.

Christian Alejandro Acosta Ulloa.

Pablo Geovanny Pinos Guartamber.

2025

Esta publicación ha sido sometida a revisión por pares académicos específicos por:

Alex Mauricio Tipán Suárez. Instituto Superior Tecnológico "Proyecto 2000"

Corrección de estilo:

• José Bolívar Carguachi Caizatoa – Docente – Sucre.

Diseño y diagramación:

• Freddy Javier Centeno Martinez – Docente - Sucre

Editorial RIMANA

Primera Edición

Quito - Ecuador

Instituto Superior Universitario Sucre

ISBN: 978-9942-686-89-3

Esta publicación está bajo una licencia de Creative Commons Reconocimiento-No Comercial-Compartir Igual 4.0 Internacional.

MISIÓN

Ser una Institución Superior Universitaria con estándares de calidad académica e innovación, reconocida a nivel nacional con proyección internacional.

VISIÓN

Formamos profesionales competentes con espíritu emprendedor, capaces de contribuir al desarrollo integral del país.

Los contenidos de este trabajo están sujetos a una licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 (CC BY-NC-SA 4.0). Usted es libre de Compartir — copiar y redistribuir el material en cualquier medio o formato. Adaptar — remezclar, transformar y construir a partir del material citando la fuente, bajo los siguientes términos: Reconocimiento- debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante. No Comercial-no puede hacer uso del material con propósitos comerciales. Compartir igual-Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original. No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia. https://creativecommons.org/licenses/by-nc-sa/4.0/

Reconocimiento-NoComercial-Compartirlgual 4.0 Internacional (CC BY-NC-SA 4.0)

Usted acepta y acuerda estar obligado por los términos y condiciones de esta Licencia, por lo que, si existe el incumplimiento de algunas de estas condiciones, no se autoriza el uso de ningún contenido.

Índice

	Presentación de la asignatura	8
	Resultados del aprendizaje	8
U	NIDAD 1: CIRCUITOS.	. 10
	La electricidad	. 10
	Materiales Semiconductores.	. 11
	Cargas pasivas	. 14
	Sistema de generación de corriente continua	. 16
	Sistema de generación de corriente alterna.	. 17
	Sistema hidroeléctrico de generación	. 18
	Sistema térmico de generación	. 20
	Sistema eólico de generación	. 21
	Sistema solar de generación.	. 23
	Sistema solar de generación.	. 24
	Análisis comparativo de sistemas de generación eléctrico en el Ecuador	. 25
	El voltaje	. 26
	Medición del voltaje	. 29
	La corriente	. 31
	Medición de corriente	. 32
	El Osciloscopio	. 33
	Guía de Práctica Técnica: Conceptos Básicos.	. 37
U	NIDAD 2 LEYES ELECTROMECANICAS BÁSICAS	. 38
	Ley de Ohm	. 38
	Ley de Ohm y Kirchhof	. 38
	Ley de Watt	. 38
	Análisis de circuitos en C.C. y A.C.	. 39
	Corriente Continua en Circuitos en Serie	. 39
	Cálculo de la sección de conductores	. 40
	Ejercicio Resuelto	. 44
	Guía de Práctica Técnica: Resistencias en circuito serie – paralelo	. 45
U	NIDAD 3: ELEMENTOS UTILIZADOS EN LAS INSTALACIONES ELÉCTRICAS	. 46

	Conductores y sus tipos	. 46
	Ductos y sus tipos	. 47
	Fusibles	. 49
	Interruptor termomagnético	. 50
	Interruptor diferencial	. 51
	Supresor de transientes	. 51
	Tablero de Distribución Principal (TDP).	. 52
	Centro de Cargas.	. 54
	Protecciones residenciales Interruptores y pulsadores	. 55
	Relés	. 56
	Acometidas	. 57
	Medidores de energía eléctrica	. 58
	Guía de Práctica Técnica: Diseño E Implementación De Circuitos Eléctricos Básicos	. 60
U	NIDAD 4: ESQUEMAS ELÉCTRICOS Y PRÁCTICAS BÁSICAS	61
	Esquemas y diagramas.	. 61
	Diagrama Unifilar.	. 61
	Diagrama multifilar.	. 62
	Diagrama funcional o de funcionamiento	. 63
	Diagrama topográfico	. 63
	Plano eléctrico.	. 64
	Plano del Cuadro de Mando y Protección	. 65
	Plano de instalación eléctrica.	. 65
	Plano de trazado de las canalizaciones.	. 66
	Aplicación en instalaciones eléctricas.	. 67
	Dimensionamiento de Protecciones residenciales	. 67
	Estudio de cargas residenciales.	. 68
	Cálculo de caídas de voltaje en acometidas	. 69
	Utilidad de la puesta a Tierra.	. 70
	Normativas y códigos eléctricos para instalaciones residenciales y comerciales	. 71
	NEC Instalaciones Eléctricas.	. 72
	Normativa de la Empresa Eléctrica Quito.	. 73

	Seguridad en Circuitos e Instalaciones Eléctricas.	. 75
	Efectos de la Electricidad.	. 76
	Tipología del riesgo eléctrico.	. 77
	Sistemas de Protección Clase A	. 79
	Sistemas de Protección Clase B.	. 80
	Guía de Práctica Técnica: Realización de puesta a tierra.	. 82
	Proyecto final.	. 83
	Autoevaluación	. 84
K	eferencias Bibliográficas	. 86

Presentación de la asignatura

La asignatura de Circuitos e Instalaciones Eléctricas aborda el estudio de los principios, tipos, configuración y aplicaciones de los sistemas eléctricos utilizados en entornos residenciales, comerciales e industriales. Es fundamental identificar y comprender los componentes esenciales como conductores, dispositivos de protección, tableros, canalizaciones y sistemas de puesta a tierra, considerando su función, normativas aplicables y métodos de instalación.

El conocimiento sobre circuitos eléctricos y su correcta distribución en una instalación es la base de la seguridad, eficiencia y funcionalidad energética, convirtiéndose en un componente esencial para la formación de los estudiantes de la Carrera de Electromecánica.

A través de esta asignatura, los estudiantes adquieren fundamentos teóricos y habilidades prácticas para el diseño, cálculo, ejecución y mantenimiento de instalaciones eléctricas conforme a estándares internacionales como los de la IEEE, NEMA, IEC y normas locales como la NEC y el CUEN.

El dominio de estos conocimientos permite al estudiante:

- Elaborar planos eléctricos con simbología técnica.
- Aplicar criterios de protección, selectividad, carga y caída de tensión.
- Implementar sistemas seguros de canalización y distribución eléctrica.
- Interpretar códigos y normativas para instalaciones residenciales y comerciales.

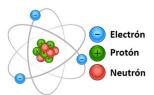
De esta forma, estarán preparados para enfrentar desafíos reales del sector eléctrico, tanto en tareas de instalación como en auditoría, diseño y gestión de proyectos, contribuyendo con una formación integral y competitiva en el mercado laboral técnico-industrial.

Resultados del aprendizaje

Al finalizar la asignatura, el estudiante estará en capacidad de:

- Interpretar planos eléctricos normalizados aplicando simbología técnica conforme a
 estándares internacionales (IEEE Std 315, NEC, IEC), para instalaciones residenciales y
 comerciales.
- Diseñar y calcular circuitos eléctricos considerando carga, demanda, caída de tensión y criterios de selectividad, aplicando procedimientos normativos (IEEE Std 141, NEC).

- Seleccionar y configurar dispositivos de protección eléctrica (disyuntores, diferenciales, fusibles) de acuerdo con parámetros técnicos, ambientes de instalación y normas aplicables (IEEE Std 242, NEMA).
- Aplicar normas de seguridad eléctrica para prevenir riesgos por contacto directo, indirecto, arco eléctrico y sobrecargas, conforme a NFPA 70E, ISO 45001 y guías de seguridad eléctrica OIT.
- Ejecutar la distribución física de instalaciones eléctricas mediante canalizaciones y
 acometidas, dimensionadas correctamente con base en condiciones técnicas y normativas
 locales (CUEN, NEC Ecuador).
- 6. Realizar análisis de puesta a tierra y protección contra sobretensiones, comprendiendo su función en la seguridad operativa y compatibilidad electromagnética (IEEE Std 80, NEMA).
- Evaluar la eficiencia energética y funcionalidad del sistema eléctrico, aplicando criterios de diseño técnico y normativo en entornos residenciales e industriales.



UNIDAD 1: CIRCUITOS.

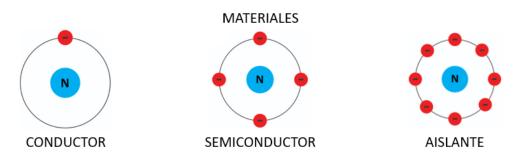
La electricidad.

Para comprender como se genera el fenómeno eléctrico es necesario comprender la estructura del átomo que la unidad más pequeña de la materia, por consiguiente, todo lo que conoce que sea palpable está formado por átomos. Un átomo está formado por de manera general por electrones (cargas negativas), protones (cargas positivas), neutrones, los mismos que están ubicados tal como se muestra en la figura 1.


FIGURA 1
Estructura atómica.

El átomo de manera general está formado por dos partes: el núcleo o parte central, allí se ubican los protones y neutrones que lo conforman, la otra parte son las órbitas que se encuentran alrededor del núcleo y allí se ubican los electrones que están girando alrededor del núcleo. Para que el átomo se encuentre en estabilidad eléctrica se debe mantener el equilibrio de cargas, esto significa que existen la misma cantidad de electrones y protones.

Los protones y neutrones no son susceptibles de moverse, es decir ellos siempre se encuentran ubicados en el núcleo, en cambio los electrones se mueven alrededor de este e incluso los que están más distantes del núcleo, capa externa, se pueden pasar a otros átomos. Este movimiento de salto de los electrones entre átomos es lo que establece la existencia del fenómeno eléctrico, se lo parecía en la figura 2 y la capacidad de los átomos de desprenderse y recibir electrones define a los materiales como: conductores, semiconductores y aislantes. (Giancoli, 2023)


FIGURA 2 Movimiento de cargas eléctricas.

El movimiento que realizan los electrones alrededor del núcleo lo hacen en trayectorias circulares llamadas orbitales y cada orbital tiene varios niveles. Un átomo tiene una cantidad total de electrones y con ellos se van llenando cada una de los orbitales y niveles, de tal forma que únicamente el último orbital es el que puede quedar incompleto en su cantidad total y a este orbital se lo conoce como capa de valencia. Con esta información se puede complementar mencionando que los materiales conductores tienen un electrón en su capa de valencia, un material semiconductor tiene cuatro electrones en la capa de valencia y un material aislante tiene ocho electrones en la capa de valencia. esto lo puede observar en la figura 3.

FIGURA 3
Estructura atómica de los materiales.

Los materiales aislantes, son aquellos que resisten el paso de energía, como: la electricidad, el sonido, la humedad, el calor y con esto generando varias condiciones de aislamiento eléctrico, acústico, de humedad, térmico, en la figura 4 se pude apreciar ejemplos de estos. (Floyd, 2022)

FIGURA 4
Materiales aislantes

Materiales Semiconductores.

Los materiales semiconductores son sustancias cuya conductividad eléctrica se encuentra entre la de los conductores y la de los aislantes. Su importancia radica en su capacidad para modificar su comportamiento eléctrico bajo ciertas condiciones, como el cambio de temperatura o la presencia de impurezas. Los semiconductores más comunes son el silicio (Si) y el germanio (Ge), aunque también

existen compuestos como el arseniuro de galio (GaAs). Estos materiales tienen una estructura cristalina y normalmente se encuentran en la naturaleza en forma de minerales que deben ser purificados para su uso tecnológico y se los observa en la figura 5.

FIGURA 5
Materiales semiconductores naturales

MATERIALES SEMICONDUCTORES

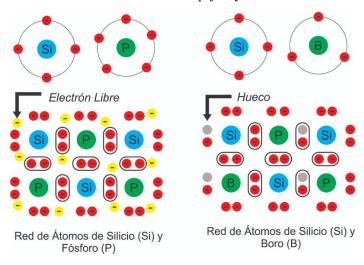
SILICIO

GERMANIO

ARSENIURO GALIO

El desarrollo de estos materiales comenzó a mediados del siglo XX, lo cual fue fundamental para el surgimiento de la electrónica moderna. Su descubrimiento permitió reemplazar los bulbos al vacío por dispositivos más pequeños, eficientes y confiables. Gracias a ellos, hoy es posible fabricar componentes como diodos, transistores y circuitos integrados. Sin los semiconductores no existirían las computadoras, teléfonos móviles ni muchos otros dispositivos electrónicos actuales. (Alexander & Sadiku, 2021)

La forma de obtención de los materiales conductores comienza con la exploración geológica para localizar depósitos minerales ricos en los metales deseados, una vez ubicado un yacimiento, se lleva a cabo la explotación minera, que puede ser subterráneo o a cielo abierto. Tras la extracción, el mineral pasa por procesos de trituración, molienda y concentración para separar el metal deseado de otros compuestos. Luego se realiza una fundición seguida de una refinación electrolítica o térmica para obtener el material puro.


El origen de los materiales semiconductores se remonta a observaciones realizadas durante el siglo XIX sobre ciertos minerales que mostraban propiedades conductoras variables. Fue hasta la década de 1940 cuando se desarrollaron técnicas para obtener semiconductores puros y controlar sus propiedades mediante dopaje. El primer transistor de estado sólido, construido en 1947 por Bardeen, Brattain y Shockley, utilizaba germanio como material base. Este hito marcó el inicio de la era de la electrónica basada en semiconductores. Aunque inicialmente se usaba principalmente el germanio, pronto se descubrió que el silicio ofrecía mejores propiedades térmicas y era más abundante en la

naturaleza, hoy en día el silicio es el semiconductor más utilizado en la industria electrónica. (Rizzoni & Kearns, 2022)

La construcción de materiales semiconductores comienza con la obtención de un material base altamente puro, generalmente silicio. Este proceso incluye la refinación del mineral hasta obtener un monocristal mediante técnicas como el método Czochralski. Durante este proceso, se introduce una pequeña cantidad de impurezas controladas en el cristal, una técnica conocida como dopaje. Este dopaje puede ser tipo n, al añadir átomos con más electrones como el fósforo, o tipo p, al usar átomos con menos electrones como el boro. Los materiales ya dopados con portadores y huecos, esto se lo puede observan en la figura 6.

FIGURA 6Materiales semiconductores con dopaje P y N

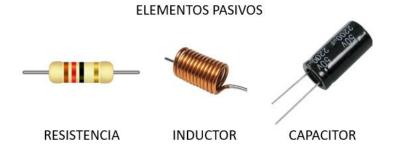
La combinación de regiones p y n dentro de un mismo material permite crear uniones que son fundamentales para el funcionamiento de los dispositivos electrónicos. Estas uniones forman la base de componentes como los diodos, los transistores bipolares y los transistores MOSFET. La precisión en el control del dopaje determina las características finales del dispositivo. Además, los avances en nanotecnología han permitido reducir cada vez más el tamaño de estos componentes, aumentando la velocidad y eficiencia. (Giancoli, 2023)

Una vez fabricado el material semiconductor, se procede a su integración en circuitos electrónicos mediante procesos de fotolitografía, deposición y grabado. Estos procesos permiten definir las estructuras necesarias para formar millares o millones de transistores en una sola pieza de silicio. Las obleas pasan por múltiples etapas de fabricación en salas limpias especializadas para evitar cualquier

contaminación. Tras el proceso de fabricación, se cortan en chips individuales que luego se encapsulan para protegerlos y facilitar su conexión en placas de circuito. Esta miniaturización ha seguido la famosa Ley de Moore, que predice el doblaje del número de transistores en un chip cada dos años aproximadamente. Sin embargo, actualmente se enfrentan límites físicos que exigen nuevas soluciones como los transistores de efecto campo tridimensionales o el uso de materiales alternativos. La continua evolución de los semiconductores está impulsando campos como la inteligencia artificial, la computación cuántica y las telecomunicaciones de alta velocidad. Varios de los elementos electrónicos semiconductores que se obtienen de estos procesos se los puede observar en la figura 7. (Nahvi & Edminister, 2021)

FIGURA 7
Elementos electrónicos semiconductores

Cargas pasivas.


Los elementos eléctricos son componentes fundamentales en cualquier circuito, diseñados para controlar el flujo de corriente y transformar la energía eléctrica. Entre los más comunes se encuentran: resistencias, capacitores, inductores, fuentes de voltaje y corriente, y dispositivos semiconductores. Cada uno cumple una función específica, como oponerse al paso de corriente, almacenar energía o permitir el control de señales.

Estos elementos pueden ser pasivos, que no generan energía, o activos, que sí pueden amplificar o generar señal. Su comportamiento se rige por leyes físicas como la ley de Ohm y las leyes de Kirchhoff. La combinación de estos componentes permite construir circuitos simples o complejos, desde una linterna hasta computadoras, es así que su estudio es esencial para entender cómo funcionan los sistemas eléctricos y electrónicos es necesario conocer sus parámetros importantes para el diseño de los circuitos. (Alexander & Sadiku, 2021)

Los elementos pasivos son tres: resistencias, inductores y capacitores, cada uno de ellos se los puede observan en la figura 8.

FIGURA 8
Elementos Eléctricos Pasivos

Las resistencias eléctricas son componentes pasivos que se oponen al flujo de corriente en un circuito, limitando así la cantidad de electricidad que lo atraviesa. Su valor se mide en ohmios (Ω) y está determinado por la ley de Ohm, que relaciona voltaje, corriente y resistencia. Estas piezas se convierten en parte de la energía eléctrica en calor, cumpliendo funciones clave como el control de niveles de señal, la división de voltaje y la protección de otros componentes. Existen diferentes tipos de resistencias, como las de carbono, películas o metálicas, y pueden ser fijas o variables según la aplicación. Su correcta selección es fundamental para garantizar el funcionamiento estable y seguro de cualquier circuito eléctrico o electrónico.

Los inductores, también conocidos como bobinas, son componentes eléctricos que almacenan energía en forma de campo magnético cuando circula corriente a través de ellos. Están formados por un conductor enrollado, generalmente alambre de cobre, alrededor de un núcleo que puede ser de aire, ferrita o hierro, lo que influye en su inductancia, medida en henrios (H). Oponen resistencia a los cambios bruscos de corriente, lo que los hace útiles en filtros, fuentes de alimentación y circuitos resonantes. Su comportamiento depende de la frecuencia de la señal, actuando como cortocircuitos en corriente continua y presentando mayor oposición en corriente alterna. Los inductores son esenciales en aplicaciones como transformadores, motores y sistemas de telecomunicaciones. (Rizzoni & Kearns, 2022)

Los capacitores son componentes eléctricos que almacenan energía en forma de carga eléctrica en un campo eléctrico, formado entre dos placas conductoras separadas por un dieléctrico. Su capacidad para almacenar carga se mide en farradios (F) y depende del área de las placas, la distancia entre ellas

y el material dieléctrico. Permiten el paso de corriente alterna mientras bloquean la corriente continua, lo que los hace útiles en filtros, acoplamiento de señales y suavizado de voltaje. Existen diversos tipos, como cerámicos, electrolíticos y de poliéster, cada uno adecuado para distintas aplicaciones según su estabilidad, tamaño y polaridad. Su capacidad para cargar y descargar rápidamente los hace fundamentales en circuitos temporizadores, fuentes de alimentación y sistemas de arranque.

Sistema de generación de corriente continua.

Los sistemas de generación de corriente continua (CC) tienen como finalidad producir un flujo constante de carga eléctrica en una sola dirección. Uno de los métodos más antiguos y tradicionales es el uso de pilas o baterías electroquímicas, que transforman la energía química almacenada en energía eléctrica. Estas fuentes son ampliamente utilizadas en dispositivos portátiles, herramientas inalámbricas y sistemas de respaldo, otra forma común es mediante celdas solares o paneles fotovoltaicos, los cuales se convierten directamente en la energía solar en corriente continua. Este tipo de generación ha ganado relevancia con el auge de las energías renovables y el desarrollo de tecnologías sostenibles, ejemplos de generadores de corriente continua se los puede observar en la figura 9. (Nahvi & Edminister, 2021)

FIGURA 9
Acumuladores de corriente continua.

BATERÍAS DE CORRIENTE CONTINUA

BATERÍA 9V DC

BATERÍA 12V DC

BATERÍA 1,5V DC

BATERÍA 3.5V DC

Además, se emplean fuentes de alimentación de corriente continua que toman corriente alterna de la red eléctrica o la transforman de una fuente motriz y la rectifican para convertirla en corriente continua utilizable por equipos electrónicos, dentro de estos están los alternadores y los dínamos que en la actualidad su uso es limitado debido a su desgaste mecánico y menor eficiencia en comparación con tecnologías modernas, ejemplos de estos generadores se los puede observar en la figura 10.

FIGURA 10
Generadores DC motrices.

GENERADORES DC

ALTERNADOR

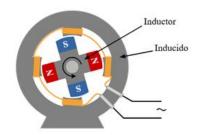
DÍNAMO

Una tecnología clave en la generación de corriente continua es el uso de rectificadores, circuitos electrónicos que convierten la corriente alterna proveniente de la red eléctrica en corriente continua. Los rectificadores pueden ser de media onda, onda completa o puente de diodos, y su elección depende del nivel de voltaje deseado y la calidad de la señal de salida. Estos sistemas suelen ir acompañados de filtros capacitivos e inductivos que suavizan la señal pulsante obtenida tras la rectificación, logrando una corriente más estable. Las fuentes de poder basadas en este principio son comunes en aparatos domésticos electrónicos e industriales. (Nahvi & Edminister, 2021) Además, se emplean reguladores de voltaje para mantener constante la salida y proteger los componentes conectados. Este tipo de sistema es económico, eficiente y adaptable a distintas necesidades energéticas. Aunque su diseño puede variar según la aplicación, su objetivo principal es garantizar un suministro continuo y estable de corriente continua.

Otro sistema importante de generación de corriente continua es el uso de motores de combustión interna acoplados a generadores de corriente continua, también conocidos como grupos electrógenos de CC. Funcionan mediante el movimiento mecánico producido por el motor, el cual se transforma en electricidad gracias al generador o dinamo conectado.

Su mantenimiento suele ser más complejo debido al desgaste mecánico y al consumo de combustible.

Con la evolución de la tecnología, muchos de estos sistemas están siendo reemplazados por alternadores seguidos de rectificación, que ofrecen mayor eficiencia y menor mantenimiento.


Sistema de generación de corriente alterna.

La corriente alterna (CA) es el tipo de corriente más utilizado en la generación y distribución masiva de energía eléctrica debido a su eficiencia para ser transportada a largas distancias. Uno de los

sistemas más comunes para generarla es mediante turbinas conectadas a alternadores, donde una fuente de energía mecánica, como vapor, agua o viento, hace girar el rotor del alternador dentro de un campo magnético. Este movimiento induce una corriente alterna en los devanados del estator, según el principio de inducción electromagnética descubierta por Faraday, este fenómeno puede ser preciado en la figura 11.

Figura 11 Alternador

Sistema hidroeléctrico de generación.

Un sistema hidroeléctrico de generación aprovecha la energía cinética y potencial del agua para producir electricidad. Este tipo de sistema se basa en el movimiento del agua almacenada en una presa o embalse, que, al liberarse, fluye a través de una tubería hacia una turbina ubicada en el interior de la central a un nivel inferior al de la toma del agua, por lo tanto, el agua está cargada de energía potencial gravitatoria. La fuerza del agua hace girar las paletas de la turbina, convirtiendo la energía hidráulica en energía mecánica rotacional. (Alexander & Sadiku, 2021)

La turbina está conectada a un alternador, cuyo funcionamiento se basa en el principio de inducción electromagnética: al girar el rotor dentro de un campo magnético fijo, se genera una corriente alterna en los devanados del estator, al mantener condiciones de presión y flujo constate del agua se logra obtener una señal sinusoidal de parámetros constantes en amplitud y frecuencia.

Una vez generada, esta electricidad es elevada a altos voltajes mediante transformadores para facilitar su transporte a través de líneas de transmisión. Finalmente, el agua utilizada en el proceso es devuelta al río o cauce natural, cerrando el ciclo hidrológico del sistema. Los sistemas hidroeléctricos son muy eficientes y pueden responder rápidamente a cambios en la demanda energética. Además, al no quemar combustibles fósiles, representan una fuente de energía limpia y renovable. Su construcción requiere grandes inversiones iniciales, pero ofrece bajos costos operativos y larga vida útil, por estas

razones, son clave en la matriz energética de muchos países. Un esquema de una central de generación hidroeléctrica se lo puede observar en la figura 12. (Nahvi & Edminister, 2021)

FIGURA 12 Esquema de central hidroeléctrica

El funcionamiento de una central hidroeléctrica puede variar según su tamaño y diseño, pero en general, todas emplean la fuerza del agua para mover turbinas ya sean agua de paso o agua acumulada en un embalse. En las centrales de paso, el flujo del río pasa directamente por las turbinas sin necesidad de grandes embalses, lo que reduce el impacto ambiental. En cambio, las centrales con embalse permiten almacenar agua y generar energía según la demanda, ofreciendo mayor flexibilidad operativa y sin depender de los fatores climáticos, en Ecuador se tiene dos ejemplos de este tipo de centrales y se las puede apreciar en la figura 13.

FIGURA 13 Centrales hidroeléctricas en el Ecuador.

Central con embalse PAUTE

Algunas centrales también operan en modo de bombeo, donde el agua es bombeada nuevamente al embalse durante horas de baja demanda para reutilizarla en momentos de alta demanda. Este tipo de instalaciones actúan como grandes sistemas de almacenamiento de energía.

Las turbinas utilizadas pueden ser de diferentes tipos, como las Francis, Kaplan o Pelton, cada una diseñada para condiciones específicas de caudal y altura del agua. El control del flujo de agua y la

velocidad de rotación se realiza mediante compuertas y reguladores automáticos. Gracias a su capacidad de arranque rápido, las centrales hidroeléctricas son ideales para cubrir picos de consumo, además, pueden integrarse con otras fuentes renovables para formar redes eléctricas más sostenibles, es así que este sistema representa una solución eficiente, limpia y estratégica para la generación de energía eléctrica a gran escala. (Floyd, 2022)

Sistema térmico de generación.

Un sistema de generación eléctrica térmica produce electricidad a partir del calor generado por la combustión de combustibles fósiles como el carbón, el petróleo o el gas natural. En primer lugar, el combustible es quemado en una caldera para producir altas temperaturas que, a su vez, calientan agua hasta convertirla en vapor a alta presión que se dirige hacia una turbina, cuyas paletas giran al ser impactadas por el flujo de vapor, transformando la energía térmica en energía mecánica. La turbina está conectada a un alternador, dispositivo encargado de convertir esta energía mecánica en energía eléctrica mediante el fenómeno de inducción electromagnética. Una vez cumplida su función, el vapor es enfriado y condensado nuevamente en estado líquido para ser reutilizado en el proceso. Los sistemas de refrigeración pueden emplear torres de enfriamiento, ríos o lagos cercanos. Estas plantas son capaces de generar grandes cantidades de electricidad de forma continua, lo que las convierte en una base importante en muchas redes eléctricas. Sin embargo, su operación implica emisiones contaminantes que afectan al medio ambiente. A pesar de esto, siguen siendo ampliamente utilizados debido a su capacidad de producción constante y su adaptabilidad a distintas escalas. (Giancoli, 2023) El funcionamiento de una central térmica puede variar según el tipo de combustible utilizado y la tecnología empleada. Algunas centrales usan turbinas de gas en lugar de calderas, en donde el combustible se quema directamente para impulsar la turbina conectada al alternador. Otras combinan ambos procesos en ciclos combinados, mejorando la eficiencia del sistema al aprovechar tanto el calor como el movimiento mecánico. Las centrales térmicas también pueden operar con biomasa o residuos industriales, reduciendo parcialmente su impacto ambiental. Para garantizar la seguridad y estabilidad del sistema, estas plantas incluyen sistemas automatizados que controlan la temperatura, presión, nivel

de combustible y otros parámetros críticos, ejemplos de estos tipos de sistemas de generación se los puede observar en la figura 14.

FIGURA 13 Centrales de generación térmica.

CENTRALES TÉRMICAS

Central térmica GUANGOPOLO

Central Biomasa LA FABRIL

Además, cuentan con sistemas de purificación del aire y de los residuos sólidos para minimizar la contaminación. Su construcción requiere una infraestructura robusta y una ubicación estratégica cerca de fuentes de combustible o redes de distribución. Aunque su tiempo de arranque es mayor que el de otras tecnologías, ofrecen una producción estable y predecible. Las centrales térmicas tienen una vida útil prolongada si reciben mantenimiento adecuado. En resumen, aunque enfrentan críticas por su huella ecológica, siguen siendo clave en muchos países para mantener el suministro energético constante. (Nahvi & Edminister, 2021)

Sistema eólico de generación.

Un sistema eólico de generación aprovecha la energía cinética del viento para producir electricidad, este tipo de sistema utiliza aerogeneradores, estructuras que cuentan con palas o rotor, las cuales giran al ser impactadas por el viento, la energía del movimiento del viento se transforma en energía mecánica a través del giro del rotor, que está conectado a un multiplicador de velocidad para aumentar las revoluciones antes de llegar al generador, el mismo que generalmente es un alternador que convierte la energía mecánica en energía eléctrica mediante el fenómeno de inducción electromagnética.

La electricidad generada es corriente alterna y se adapta a los niveles de voltaje necesarios mediante un transformador ubicado en la base del aerogenerador y posteriormente, la energía es transportada a través de una red interna de la planta eólica hacia una subestación, desde donde se inyecta al sistema eléctrico nacional. A este conjunto de aerogeneradores se lo conoce como parques eólicos que suelen

ubicarse en zonas con vientos constantes y fuertes, como colinas, costas o mar abierto. Al no emitir contaminantes durante su operación, este sistema es una fuente limpia y renovable de generación eléctrica. Su funcionamiento depende directamente de las condiciones climáticas y la velocidad del viento, a pesar de su bajo impacto ambiental, requiere de una planificación adecuada para maximizar su eficiencia y minimizar efectos sobre la fauna y el paisaje. (Nahvi & Edminister, 2021)

El funcionamiento de un aerogenerador puede variar según su diseño, pero la mayoría opera con un sistema de orientación que permite al rotor girar para enfrentar siempre la dirección del viento. Los sensores y controladores ajustan automáticamente la posición para optimizar la captación de energía. Además, las palas están fabricadas con materiales ligeros y resistentes que permiten una operación eficiente incluso en condiciones extremas. La velocidad del viento determina la cantidad de energía generada, por lo que existe una velocidad mínima para iniciar la producción y una máxima para evitar daños mecánicos, un generador eólico se lo puede observar en la figura 15.

FIGURA 14 Parques Eólicos del Ecuador

VILLONACO LOJA

CIER GALAPAGOS

Para facilitar la integración a la red eléctrica, algunos sistemas incluyen convertidores de potencia que regulan la frecuencia y el voltaje de salida. Los parques eólicos pueden estar conectados a la red de transporte o funcionar de forma aislada en comunidades remotas. La energía eólica es especialmente útil en combinación con otras fuentes renovables, como la solar, para garantizar un suministro constante. Aunque su generación no es completamente constante, su bajo costo de operación y su rápido retorno energético la convierten en una alternativa sostenible. En los últimos años, la tecnología eólica ha avanzado significativamente en tamaño, eficiencia y capacidad de generación. Por todo ello, los sistemas eólicos son una pieza clave en la transición energética hacia fuentes limpias y renovables. (Rizzoni & Kearns, 2022)

Sistema solar de generación.

Un sistema solar de generación eléctrica aprovecha la energía proveniente del sol para producir electricidad, siendo una de las fuentes renovables más limpias y accesibles. Este tipo de sistema utiliza principalmente paneles solares fotovoltaicos, compuestos por celdas semiconductoras, generalmente de silicio, que convierten directamente la radiación solar en corriente eléctrica continua. Cuando los fotones de la luz solar impactan sobre la superficie de las celdas, generan un flujo de electrones gracias al efecto fotovoltaico, creando así una corriente eléctrica. Esta corriente es conducida a través de un circuito interno y luego enviada a un inversor, dispositivo que transforma la corriente continua en corriente alterna, compatible con la red eléctrica y los electrodomésticos comunes. Los sistemas solares pueden funcionar conectados a la red nacional o de forma autónoma, utilizando baterías para almacenar energía. Además, incluyen estructuras de soporte que permiten orientar los paneles hacia el sol para maximizar su captación. Su instalación puede realizarse en techos, terrenos abiertos o incluso flotar sobre cuerpos de agua. Al no emitir contaminantes durante su operación, esta tecnología contribuye significativamente a la sostenibilidad energética. Aunque su producción depende de las condiciones climáticas y la irradiación solar, su bajo mantenimiento y larga vida útil lo hacen muy eficientes, estas características los hacen ideales zonas rurales o remotas donde el acceso a la red eléctrica es limitado. (Giancoli, 2023)

El funcionamiento de un sistema solar también puede incluir tecnologías termo solares, que utilizan la radiación solar para calentar un fluido y generar vapor que mueve una turbina conectada a un alternador, produciendo así electricidad. Sin embargo, la tecnología más extendida es la fotovoltaica, debido a su simplicidad, bajo costo relativo y facilidad de instalación. Estos sistemas emplean reguladores de carga cuando se usan baterías, para evitar sobrecargas y prolongar su vida útil. Además, muchos sistemas modernos incluyen monitoreo inteligente que permite conocer en tiempo real la cantidad de energía generada y consumida. En aplicaciones residenciales, comerciales e industriales, los sistemas solares están ayudando a reducir costos de energía y disminuir la dependencia de combustibles fósiles. La integración de estos sistemas a la red eléctrica está impulsando el desarrollo de redes inteligentes (Smart Grids) más flexibles y sostenibles. A medida

que avanza la tecnología, aumenta la eficiencia de los paneles y disminuyen sus costos, facilitando su adopción masiva. En conjunto, los sistemas solares de generación eléctrica representan una solución clave en la transición hacia una matriz energética más limpia y renovable.

En Ecuador, el uso de la energía solar fotovoltaica aún está en desarrollo, pero ha crecido en los últimos años con la implementación de proyectos a nivel distribuido y algunos parques solares a menor escala para diversificar la matriz energética. Por ejemplo, Instalaciones solares en las islas Galápagos en donde se han implementado sistemas híbridos (solar + diésel) en islas como San Cristóbal e Isabela, con apoyo del BID y cooperación internacional, para reducir el uso de combustibles fósiles mediante la utilización de 6000 paneles fotovoltaicos, se observa en la figura 16. (Rizzoni & Kearns, 2022)

FIGURA 15 Sistema de generación fotovoltaico

GALAPAGOS

Sistema solar de generación.

Un sistema solar de generación eléctrica aprovecha la energía proveniente del sol para producir electricidad, siendo una de las fuentes renovables más limpias y accesibles. Este tipo de sistema utiliza principalmente paneles solares fotovoltaicos, compuestos por celdas semiconductoras, generalmente de silicio, que convierten directamente la radiación solar en corriente eléctrica continua. Cuando los fotones de la luz solar impactan sobre la superficie de las celdas, generan un flujo de electrones gracias al efecto fotovoltaico, creando así una corriente eléctrica. Esta corriente es conducida a través de un circuito interno y luego enviada a un inversor, dispositivo que transforma la corriente continua en corriente alterna, compatible con la red eléctrica y los electrodomésticos comunes. Los sistemas solares pueden funcionar conectados a la red nacional o de forma autónoma, utilizando baterías para almacenar energía. Además, incluyen estructuras de soporte que permiten

orientar los paneles hacia el sol para maximizar su captación. Su instalación puede realizarse en techos, terrenos abiertos o incluso flotar sobre cuerpos de agua. Al no emitir contaminantes durante su operación, esta tecnología contribuye significativamente a la sostenibilidad energética. Aunque su producción depende de las condiciones climáticas y la irradiancia solar, su bajo mantenimiento y larga vida útil lo hacen muy eficientes. Es ideal para zonas rurales o remotas donde el acceso a la red eléctrica es limitado.

El funcionamiento de un sistema solar también puede incluir tecnologías termo solares, que utilizan la radiación solar para calentar un fluido y generar vapor que mueve una turbina conectada a un alternador, produciendo así electricidad. Sin embargo, la tecnología más extendida es la fotovoltaica, debido a su simplicidad, bajo costo relativo y facilidad de instalación. Estos sistemas emplean reguladores de carga cuando se usan baterías, para evitar sobrecargas y prolongar su vida útil. Además, muchos sistemas modernos incluyen monitoreo inteligente que permite conocer en tiempo real la cantidad de energía generada y consumida. En aplicaciones residenciales, comerciales e industriales, los sistemas solares están ayudando a reducir costos de energía y disminuir la dependencia de combustibles fósiles. La integración de estos sistemas a la red eléctrica está impulsando el desarrollo de redes inteligentes (Smart Grids) más flexibles y sostenibles. A medida que avanza la tecnología, aumenta la eficiencia de los paneles y disminuyen sus costos, facilitando su adopción masiva. En conjunto, los sistemas solares de generación eléctrica representan una solución clave en la transición hacia una matriz energética más limpia y renovable.

Análisis comparativo de sistemas de generación eléctrico en el Ecuador.

En el Ecuador, a mediados de 2025, la generación hidroeléctrica sigue siendo la principal fuente de producción de energía eléctrica, representando más del 60% del total de la matriz energética. Grandes proyectos como la Central Hidroeléctrica Coca Codo Sinclair, con una capacidad de 1.500 MW, han sido fundamentales para garantizar un suministro constante y económico. Además, existen otras centrales como Paute, Mazar y Toachi-Pilatón, que complementan la generación en diferentes regiones del país. La ventaja de estos sistemas es que son limpios, renovables y permiten un bajo costo de operación. Sin embargo, su dependencia de las condiciones climáticas y los niveles de

precipitación los hace vulnerables durante sequías prolongadas. A pesar de ello, el país sigue invirtiendo en nuevas minicentrales hidroeléctricas para abastecer comunidades rurales. La interconexión entre las centrales hidroeléctricas permite una distribución más eficiente de la energía. Además, estos sistemas son clave para el autoabastecimiento energético y la exportación de energía hacia países vecinos. El gobierno continúa evaluando proyectos sostenibles que minimicen el impacto ambiental y social. En general, la energía hidroeléctrica sigue siendo el pilar más importante del sistema eléctrico ecuatoriano.

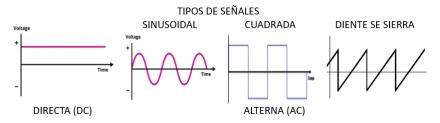
Por otro lado, la generación térmica, eólica y solar complementan la matriz energética del Ecuador, aunque con menor proporción comparada con la hidroelectricidad. Las centrales térmicas, como Termo pichincha y Termo boyas, operan principalmente como respaldo en situaciones de emergencia o cuando la generación hídrica disminuye por condiciones climáticas adversas. Estas plantas utilizan principalmente gas natural, aunque algunas emplean diésel, lo cual incrementa su costo operativo y su huella de carbono. En cuanto a la energía eólica, el parque Villonaco, ubicado en Loja, es uno de los pocos proyectos comerciales en operación, con una capacidad de 16,5 MW, demostrando el potencial del país en esta área. La energía eólica se encuentra en fase de expansión, con estudios técnicos en marcha para desarrollar nuevos parques en la Sierra y zonas costeras. En cuanto a la energía solar, aunque su desarrollo aún es limitado, existen pequeños proyectos en la Amazonía y en zonas rurales, como los sistemas de autoconsumo en Galápagos y en comunidades alejadas de la red nacional. El gobierno impulsa iniciativas para incentivar la generación distribuida mediante paneles solares en hogares y empresas. Aunque la inversión en estas fuentes renovables aún es baja, su relevancia está creciendo con el tiempo. En conjunto, el Ecuador está avanzando en la diversificación de sus fuentes de generación, aunque la dependencia de la energía hidroeléctrica sigue siendo predominante a mediados de 2025.

El voltaje

El voltaje, también conocido como diferencia de potencial, es una magnitud física que indica la cantidad de energía necesaria para mover una carga eléctrica entre dos puntos en un circuito. Se puede entender como la "fuerza" que impulsa a los electrones a través de un conductor, generando así una

corriente eléctrica. Su unidad en el Sistema Internacional es el voltio (V), en honor al físico italiano Alessandro Volta. Un voltio equivale a un julio por culombio (1 V = 1 J/C), lo cual refleja la energía transferida por unidad de carga. El voltaje se mide combinado con un instrumento llamado voltímetro, conectado en paralelo al componente o circuito que se analiza. (Floyd, 2022)

Esta magnitud es fundamental en el estudio y diseño de sistemas eléctricos y electrónicos, ya que, sin voltaje, no podría existir flujo de corriente en un circuito cerrado. Su comprensión permite explicar cómo se transfiere la energía en los circuitos, ya que el comportamiento del voltaje depende tanto del tipo de fuente como de las características del material conductor, de esta manera el voltaje influye en el comportamiento de las cargas ya que en las mismas se genera una diferencia de potencial.


Cuando se aplica un voltaje a un material conductor, las cargas negativas (electrones) se mueven desde el punto de menor potencial hacia el de mayor potencial, aunque convencionalmente se considera que la corriente fluye del positivo al negativo. Este movimiento ocurre siempre que haya un camino cerrado y un medio conductor adecuado. En materiales conductores, las cargas se desplazan con facilidad, mientras que en los aislantes su movimiento es prácticamente nulo. El voltaje genera un campo eléctrico interno que ejerce una fuerza sobre las cargas libres, originando la corriente y la intensidad de este flujo depende también de la resistencia del material, según lo establece la Ley de Ohm.

En condiciones normales, el movimiento de cargas es continuo en presencia de un voltaje constante. En semiconductores, el comportamiento de las cargas cambia significativamente debido a sus propiedades específicas. En superconductores, por ejemplo, las cargas fluyen sin resistencia alguna cuando se alcanzan ciertas temperaturas. En resumen, el voltaje actúa como el impulsor del flujo de cargas en cualquier sistema eléctrico.

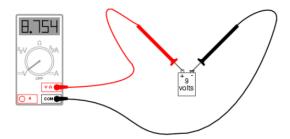
Existen varios tipos de voltaje, siendo los más comunes el voltaje continuo (DC) se caracteriza por mantener siempre la misma polaridad y valor durante el tiempo, además se dispone de el voltaje alterno (AC) varía periódicamente en magnitud y dirección, siguiendo una forma de onda, por lo general senoidal, pero sin problema que estas señales puedan variar a otras formas de onda, estas señales se las puede observar en la figura 17, en donde a más se las señal sinusoidal alterna se tiene la cuadrada, diente se sierra y rampa.

FIGURA 16 Tipos de señales DC y AC

Se utiliza principalmente en redes de distribución eléctrica debido a su eficiencia en la transmisión a largas distancias. También existen otros tipos menos comunes, como el voltaje pulsante, que varía en magnitud, pero no invierte su polaridad. En aplicaciones industriales pueden encontrarse voltajes trifásicos, utilizados para alimentar maquinaria pesada. Además, en electrónica digital se utilizan voltajes lógicos discretos que representan estados binarios (0 y 1). Los niveles típicos son de 5 V, 3,3 V o incluso menores en circuitos modernos. Cada tipo de voltaje tiene aplicaciones específicas según las necesidades del sistema donde se utiliza.

En la práctica, el comportamiento del voltaje varía según el tipo de corriente y el entorno en el que se encuentre. En corriente continua, el voltaje permanece constante en el tiempo, lo que facilita su uso en circuitos electrónicos sensibles. En cambio, en corriente alterna, el voltaje cambia cíclicamente, lo que permite el uso de transformadores para elevar o reducir su nivel según sea necesario. Este comportamiento hace posible la distribución eficiente de energía eléctrica a gran escala. Además, en sistemas electrónicos complejos, como los microprocesadores, el control preciso del voltaje es crucial para garantizar el correcto funcionamiento. Las fluctuaciones o caídas de voltaje pueden causar fallos en equipos sensibles, por lo que se emplean reguladores y estabilizadores. En ambientes extremos, como en el espacio o en plantas industriales, se requieren voltajes especialmente diseñados para soportar condiciones adversas. El estudio del voltaje también incluye fenómenos como el ruido eléctrico, las interferencias electromagnéticas y las sobretensiones. Estos factores afectan el comportamiento de las cargas y deben ser considerados en el diseño de circuitos. En conclusión, el voltaje es una variable esencial que define cómo se mueven las cargas y cómo se transfiere la energía eléctrica en múltiples aplicaciones tecnológicas.

Medición del voltaje

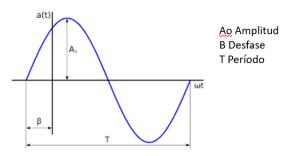

Para medir voltaje es necesario establecer que la conexión de este instrumento es en paralelo a los puntos en donde se desea realizar la medición y segundo identificar el tipo de voltaje (AC o DC) y seleccionar la función adecuada en el aparato.

Luego, se estima el valor esperado de voltaje para elegir una escala inicial más alta que evite dañar el instrumento.

Se conectan las puntas de prueba: la roja al terminal positivo o de voltaje y la negra a tierra o común. A continuación, se puede tocar cuidadosamente los puntos del circuito donde se desea medir el voltaje. Si la lectura es muy baja, se reduce gradualmente la escala para mayor precisión, sin sobrepasar el límite del rango. Es fundamental no exceder la escala seleccionada para evitar dañar el voltímetro analógico o que el muestreador digital se sobrecargue.

Durante la medición, se debe mantener una buena conexión y evitar tocar partes metálicas para seguridad. Una vez obtenida la lectura estable, se registra el valor con su unidad correspondiente (V o mV). Finalmente, se desconectan las puntas y se coloca el selector en la posición de apagado o en una escala segura, la forma de conexión del voltímetro se lo puede apreciar en la figura 18.

FIGURA 17 Conexión del voltímetro


Cuando se está realizando mediciones de voltaje continuo se obtienen valores directos de la señal, esto significa que si en instrumento nos indica 3,5 V, en efecto la señal tiene ese valor de voltaje, ahora cuando se mide voltajes alternos el voltímetro entregará un valor denominado RMS (root mean square), es decir valor medio cuadrático esto es debido a que una señal alterna está formada por varios parámetros y el instrumento lo que hace es obtener un valor medio.

Los parámetros que conforman una señal sinusoidal de voltaje alterno son los mostrados en la figura 19.

FIGURA 18 Señal senoidal de voltaje alterno

De la figura 19 se tiene las siguientes definiciones:

Amplitud (Ao): Es el valor máximo que alcanza la señal, ya sea en su parte positiva o negativa.

Representa el pico de voltaje o corriente (Vp o Ip).

Valor pico (Vp o Ip): Es la máxima magnitud instantáneamente que alcanza la señal medida desde cero hasta su cresta.

Valor pico a pico (Vpp o Ipp): Es la diferencia entre el valor máximo positivo y el máximo negativo, este valor corresponde al doble del voltaje pico.

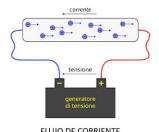
Frecuencia (f) : Número de ciclos completos que realizan la señal en un segundo, medida en hercios (Hz). Indica qué tan rápido oscila la señal.

Periodo (T): Tiempo que tarda la señal en completar un ciclo completo. Es el inverso de la frecuencia. $f = \frac{1}{T} y \text{ está medido en segundos.}$

Fase (β) : Indica el desplazamiento horizontal de la señal respecto a un punto de referencia. Se mide en grados (\circ) o radianes y es relevante al comparar señales.

Valor eficaz o RMS (Root Mean Square): Es el valor equivalente de una corriente o voltaje continuo que produciría la misma potencia en una resistencia.

Para una señal sinusoidal $V_{rms} = \frac{V_p}{\sqrt{2}}$: V es decir $V_{rms} = 0.707 V_p$



La corriente.

La corriente eléctrica es el flujo ordenado de cargas eléctricas a través de un material conductor, esto significa electrones en movimiento. Este fenómeno ocurre cuando existe una diferencia de potencial (voltaje) que impulsa las cargas a moverse dentro del circuito. Su unidad en el Sistema Internacional es el amperio (A), definido como el paso de un culombio de carga por segundo (1 A = 1 C/s). La corriente se puede medir con un instrumento llamado amperímetro, conectado en serie al circuito. En los materiales conductores, los electrones libres son los responsables del transporte de carga. La intensidad de la corriente depende tanto del voltaje aplicado como de la resistencia del material conductor. Según la Ley de Ohm, la corriente es directamente proporcional al voltaje e inversamente proporcional a la resistencia. Este principio es fundamental para entender y diseñar circuitos eléctricos y electrónicos. La corriente puede comportarse de manera diferente según el tipo de material o el entorno donde se encuentre.

El comportamiento de las cargas en presencia de corriente eléctrica está determinado por factores como el tipo de material, el voltaje aplicado y la estructura interna del conductor. En los metales, los electrones libres se mueven en dirección opuesta al campo eléctrico generado por el voltaje, aunque convencionalmente se considera que la corriente fluye del polo positivo al negativo. En otros medios conductores, como los electrolitos o los semiconductores, pueden moverse tanto cargas positivas como negativas, contribuyendo ambas al flujo total de corriente, este fenómeno se lo puede apreciar en la figura 20. (Rizzoni & Kearns, 2022)

FIGURA 19 Circulación de cargas

En los semiconductores, la corriente se debe al desplazamiento de electrones y huecos, lo cual permite controlar su magnitud mediante dispositivos como los transistores, en condiciones normales, el flujo de corriente es continuo mientras haya un camino cerrado y una fuente de energía, pero si la

resistencia del material es muy alta, como en los aislantes, el flujo de corriente es prácticamente nulo.

En superconductores, por otro lado, la corriente puede circular sin pérdida alguna de energía.

Igual que en el caso del voltaje, la corriente también pude ser continua o alterna, influyendo en cómo se distribuye la energía, en sistemas complejos, como los circuitos integrados, el control preciso de la

corriente es vital para evitar sobrecalentamientos o daños.

La corriente continua mantiene siempre el mismo sentido y valor constante en el tiempo, como ocurre en baterías, celdas solares o fuentes de alimentación reguladas, este tipo de corriente es ideal para dispositivos electrónicos portátiles y circuitos digitales, por otro lado, la corriente alterna cambia periódicamente de magnitud y dirección, siguiendo una forma de onda, normalmente senoidal. Se utiliza ampliamente en redes de distribución eléctrica debido a su eficiencia en la transmisión a largas distancias y su capacidad para ser transformada fácilmente en diferentes niveles de voltaje distintos. Además de estos dos tipos principales, también existen variantes como la corriente pulsante, que mantiene una misma dirección, pero varía en magnitud, también en forma rectificada. En algunos sistemas avanzados, se emplean corrientes polifásicas, como la trifásica, utilizadas en maquinaria industrial.

En electrónica digital, se manejan corrientes asociadas a señales lógicas discretas que representan valores binarios, así como también se han desarrollado corrientes especiales para usos específicos como en telecomunicaciones o la instrumentación industrial.

Medición de corriente

Para medir la corriente, ya sea alterna (AC) o continua (DC), con un amperímetro de varias escalas, es fundamental seguir un procedimiento seguro y preciso debido a que la conexión del instrumento de medición hace que la variable atraviese por el mismo pudiendo causar irreparables efectos.

Primero, se debe identificar el tipo de corriente en el circuito (AC o DC) y seleccionar la función correspondiente en el amperímetro.

Luego, se estima el valor esperado de corriente para elegir una escala inicial alta, evitando así sobrecargar el instrumento.

A continuación, se apaga el circuito y se interrumpe la trayectoria de la corriente para conectar el amperímetro en serie con el componente o carga donde se desea medir.

Se conecta la sonda roja al terminal de corriente positiva y la negra al común (COM), respetando la polaridad en corriente continua.

Una vez conectado, se enciende el circuito y se observa la lectura; si es muy baja, se puede cambiar a una escala menor para mayor precisión, siempre sin exceder el límite del rango.

Es crucial no conectar el amperímetro en paralelo, ya que causaría un cortocircuito.

Durante la medición, se debe mantener una manipulación segura para evitar contacto con partes energizadas.

Finalizada la medición, se apaga el circuito, se desconecta el amperímetro y se vuelve a configurar el selector en una posición segura, como voltaje o apagado, para proteger el equipo en futuras mediciones.

El Osciloscopio

El osciloscopio es un instrumento de medición esencial en electrónica que permite visualizar gráficamente la variación de una señal eléctrica en el tiempo. Su principal utilidad consiste en mostrar formas de onda, lo que facilita el análisis de parámetros como voltaje, frecuencia, periodo, amplitud y fase.

La pantalla del osciloscopio está dividida en dos ejes: el eje horizontal (X), que representa el tiempo, y el eje vertical (Y), que indica el voltaje de la señal aplicada. Gracias a esta representación, es posible observar comportamientos dinámicos que otros instrumentos, como el multímetro, no pueden capturar. Además, permite comparar señales múltiples mediante canales independientes, ideal para estudiar desfases o sincronización entre señales.

Entre sus funciones destacan el ajuste de la base de tiempos, el control de sensibilidad vertical y el disparo (trigger), que estabiliza la señal en pantalla. También ofrece herramientas para mediciones automáticas, como valor pico, RMS, frecuencia y ancho de pulso. Su aplicación abarca desde el diagnóstico de fallas en circuitos electrónicos hasta el desarrollo de sistemas de comunicación y control. En entornos educativos e industriales, el osciloscopio es una herramienta indispensable para

validar el correcto funcionamiento de los dispositivos. En resumen, combina precisión y versatilidad para convertirse en el "microscopio" del ingeniero eléctrico y electrónico, en el mercado se pueden encontrar de dos tipos, los analógicos y los digitales, los mismo que se pueden apreciar en la figura 21.

FIGURA 20 Osciloscopios

TIPOS DE OSCILOSCOPIOS

ANALÓGICO

DIGITAL

Uso del osciloscopio

Para medir señales de DC y AC se puede seguir esta guía paso a paso.

1. Encendido y configuración inicial del osciloscopio

Encienda el equipo y esperar a que complete su secuencia de arranque. Ajuste los controles verticales y horizontales para centrar la traza (línea base) en la pantalla. Asegúrese de que el canal que usará (por ejemplo, CH1) esté activado y en modo de visualización normal.

2. Conexión y preparación de la sonda

Conecte la sonda al canal deseado. La mayoría de las sondas tienen un interruptor de atenuación (1X o 10X). Utilice 10X para mediciones comunes, ya que reduce la carga sobre el circuito y mejora la precisión. Ajuste el menú del osciloscopio al mismo factor (10X) para que las mediciones sean correctas. Luego, realice la compensación de la sonda: conecte la punta al punto de calibración (generalmente una señal cuadrada de 1 kHz y 5 Vpp) y ajuste el tornillo en la base de la sonda hasta que la onda cuadrada se vea perfectamente recta, sin redondeos ni picos.

3. Conexión al circuito

Coloque la punta de prueba sobre el punto del circuito donde desea medir la señal. La pinza de tierra (referencia) debe conectarse al terminal común o masa del circuito. Es crucial que la masa del

osciloscopio esté al mismo potencial que la masa del circuito, ya que el osciloscopio esté conectado a tierra eléctrica a través del enchufe.

4. Selección del tipo de conexión (AC/DC/GND)

Utilice el selector de conexión en el canal para elegir cómo se procesa la señal:

DC (acoplamiento directo): Permite pasar tanto el componente continuo como la alterna. Es ideal para medir voltajes fijos (como 5 VDC) o señales con offset, como una sinusoide de 1 Vpp centrada en 3 V.

AC (acoplamiento capacitivo): Inserte un capacitor en serie que bloquea el componente DC, mostrando solo la variación de voltaje en torno a cero. Útil para analizar rizado en fuentes de poder o señales pequeñas superpuestas a un voltaje alto de continua.

GND: Desconecta la señal y conecta la entrada a tierra interna, permitiendo ver dónde está el nivel 0 V en la pantalla. Sirve como referencia antes de medir.

5. Medición de señales DC

Coloque el acoplamiento en DC, conecte la sonda y observe la traza. Una señal de continua aparecerá como una línea horizontal desplazada del eje cero. Multiplica el número de divisiones verticales por el valor de volts/div seleccionado para obtener el voltaje.

6. Medición de señales AC

Para señales puras de AC (como una sinusoide de 60 Hz), puede usar AC o DC , dependiendo del objetivo:

En AC, verá solo la oscilación centrada en cero (útil para analizar amplitud y forma).

En DC, podrá ver si hay un desplazamiento (offset), como una señal de 10 Vpp con un nivel medio de 5 V. Ajuste la base de tiempos (time/div) para visualizar uno o varios ciclos completos. Mide el periodo (T) y puede calcular la frecuencia.

7. Ajuste del disparo (trigger)

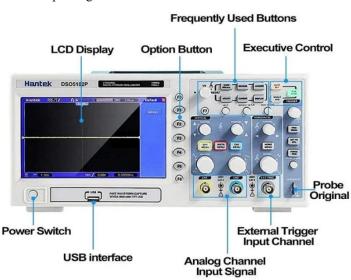
Utilice el control de disparador para estabilizar la señal en pantalla. Ajusta el nivel de disparo hasta que la forma de onda se mantenga fija. El modo más común es "flanco ascendente" para señales sinusoidales o cuadradas.

8. Lectura de resultados

Utilice los cursores o la función de medición automática (si el osciloscopio la tiene) para obtener valores como:

Voltaje pico a pico (Vpp)

Valor RMS (para señales AC)


Frecuencia y periodo

Nivel DC (desplazamiento)

Un detalle muy importante que se debe considerar cunado se está utilizando el osciloscopio es que tiene su masa conectada directamente a tierra eléctrica. Si intenta medir una señal en un circuito flotante (como el lado secundario de un transformador no aterrizado) o en sistemas de potencia donde ningún punto esté a tierra, puede crear un cortocircuito al conectar la pinza de tierra. El transformador de aislamiento es un dispositivo que se conecta entre la red eléctrica y un equipo (como una fuente de poder en banco de pruebas), y rompe la conexión directa con tierra, permitiendo que el circuito "flote". Esto es útil para evitar lazos de tierra y medir señales en circuitos que no deben estar referenciados a tierra.

Sin embargo, el transformador de aislamiento no se conecta al osciloscopio, sino que se usa para alimentar el circuito bajo prueba de forma segura. Así, al usar el osciloscopio, puedes conectar la pinza de tierra sin riesgo de cortocircuito. En la figura 22 se pueden apreciar los controles más comunes de un osciloscopio.

FIGURA 21 Osciloscopio Digital

Guía de Práctica Técnica: Conceptos Básicos.

Objetivo

Comprender y aplicar los principios básicos de la generación de electricidad mediante la construcción de un sistema simple de generación utilizando materiales accesibles y de bajo costo.

Materiales Necesarios

- 1 motor DC pequeño (como los usados en juguetes)
- 1 bombillo LED
- 1 soporte para el motor (puede ser de cartón o madera)
- Cables de conexión
- Pinzas cocodrilo (opcional)
- Cinta adhesiva o termocontráctil
- Eje con manivela o hélice casera (puede ser una tapa de botella modificada).

Pasos para entender los conceptos básicos de electricidad.

- 1. Fija el motor DC en un soporte estable utilizando cinta adhesiva o tornillos.
- 2. Conecta dos cables a las terminales del motor.
- 3. Une los extremos libres de los cables al bombillo LED (usando pinzas cocodrilo si están disponibles).
- 4. Coloca un eje con manivela o una hélice en el eje del motor para permitir el giro manual o con viento.
- 5. Gira el eje del motor rápidamente con la mano o colócalo frente a un ventilador para que el movimiento genere electricidad.
- 6. Observa si el LED se enciende. Si no se enciende, invierte la polaridad de los cables del motor al LED.
- 7. Registra tus observaciones sobre la intensidad de la luz según la velocidad de giro.

UNIDAD 2 LEYES ELECTROMECANICAS BÁSICAS.

Ley de Ohm

La ley de Ohm, que relaciona el voltaje y la corriente, se publicó en 1827 como:

$$V = I \times R \tag{1}$$

La unidad de resistencia R se denominó ohmio en honor de Ohm y suele abreviarse con el símbolo Ω (letra omega mayúscula), donde $1\Omega = 1$ V/A.

"La Ley de Ohm establece que la corriente en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional a la resistencia del circuito. Esta relación se expresa matemáticamente como:

 $V = I \times R$, donde V es el voltaje, I es la corriente y R es la resistencia." (Floyd, 2007)

Ley de Ohm y Kirchhof

"La ley del voltaje de Kirchhoff es una ley fundamental de circuito que establece que la suma algebraica de todos los voltajes localizados en una sola trayectoria cerrada es cero o, en otras palabras, que la suma de las caídas de voltaje es igual al voltaje de fuente total" (Floyd, 2007)

"La ley del voltaje de Kirchhoff se ocupa de los voltajes presentes en una sola trayectoria cerrada.

La ley de la corriente de Kirchhoff es aplicable a corrientes que circulan por múltiples trayectorias" (Floyd, 2007)

Ley de Watt

Energía es la capacidad de realizar un trabajo.

Potencia es la razón de cambio a la cual se utiliza la energía.

$$P = \frac{W}{t} = \frac{J}{s} \tag{2}$$

Un watt (W) es la cantidad de potencia cuando se utiliza un joule en un segundo.

En un circuito eléctrico, la cantidad de potencia disipada depende de la cantidad de resistencia y de corriente, lo cual se expresa como sigue:

$$P = I^2 \times R \tag{3}$$

$$P = V \times I \tag{4}$$

$$P = \frac{V^2}{R} \tag{5}$$

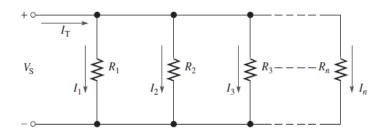
La relación entre potencia y corriente, voltaje, y resistencia expresada en las fórmulas precedentes se conoce como ley de Watt.

Análisis de circuitos en C.C. y A.C.

Corriente Continua en Circuitos en Serie

La resistencia total de un circuito en serie es igual a la suma de todas las resistencias de cada resistor individual dispuesto en serie:

$$R_T = R_1 + R_2 + R_3 \dots R_n \tag{6}$$


Aplicando la Ley de Ohm para calcular la corriente.

$$I = \frac{Vs}{R_T} \tag{7}$$

En corriente continua de Circuitos en Paralelo, (ver la figura 3) se puede escribir la ecuación del circuito d la siguiente manera.

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \dots + \frac{1}{R_n}} \tag{8}$$

Figura 23: Conexión paralela de resistencias.

Cálculo de la sección de conductores

El cálculo de la sección de los conductores eléctricos es un paso crucial en el diseño de cualquier instalación, ya que garantiza la seguridad, eficiencia y correcto funcionamiento del sistema. No se trata solo de determinar un grosor, sino de asegurar que el cable sea capaz de transportar la corriente necesaria sin sobrecalentarse, manteniendo una caída de tensión aceptable y soportando posibles cortocircuitos.

Aquí se detallan los factores clave y los criterios para el cálculo de la sección de conductores:

Factores a Considerar en el Cálculo de la Sección de Conductores

Intensidad Máxima Admisible (Corriente): Es la cantidad máxima de amperios que un conductor puede transportar de forma continua sin que su temperatura supere el límite admisible del aislamiento. Este es el primer criterio y el más fundamental para evitar el sobrecalentamiento y el deterioro del aislamiento del cable.

Cálculo: Se determina a partir de la potencia (P) de los equipos conectados, la tensión (U) del sistema y el factor de potencia ($\cos \phi$) de la carga.

Para circuitos monofásicos:

$$P = U \times I \times \cos\phi \tag{9}$$

Para circuitos trifásicos:

$$P = 1,72 \times U \times I \times \cos\phi \tag{10}$$

Consideraciones:

Tipo de aislamiento: Cada material aislante (PVC, XLPE, EPR, etc.) tiene una temperatura máxima de servicio que limita la corriente admisible.

Método de instalación: Si el cable está en tubo, al aire, enterrado, en canalización, etc., esto afecta la disipación del calor y, por ende, la corriente que puede transportar.

Agrupamiento de cables: Si varios cables van juntos en una misma canalización, se reduce su capacidad de disipar calor, lo que exige la aplicación de factores de corrección.

Temperatura ambiente: La capacidad del cable para disipar calor también se ve afectada por la temperatura del entorno.

Caída de Tensión (ΔV): Es la diferencia de potencial que se produce a lo largo del conductor debido a su resistencia. Una caída de tensión excesiva puede afectar el rendimiento de los equipos, provocando un funcionamiento ineficiente o incluso daños. Las normativas eléctricas establecen límites máximos para la caída de tensión.

Cálculo: La fórmula general para el cálculo de la sección por caída de tensión es:

Para corriente continua y monofásica:

$$S = \Delta V \cdot \gamma 2 \cdot L \cdot I \tag{11}$$

Para corriente alterna trifásica:

$$S = \Delta V \cdot \gamma 3 \cdot L \cdot I \cdot \cos \phi \tag{12}$$

Donde:

S: Sección del conductor en mm².

L: Longitud del conductor en metros.

I: Intensidad de corriente en amperios.

 Δ V: Caída de tensión máxima permitida en voltios (se calcula a partir del porcentaje de caída de tensión permitido y la tensión nominal).

 γ : Conductividad del material del conductor (m/(Ω ·mm2)). Para el cobre, $\gamma \approx$ 56; para el aluminio, $\gamma \approx$ 35.

cosφ: Factor de potencia de la carga.

Límites normativos (Ejemplos generales, consultar normativa local):

Circuitos de iluminación: Generalmente se acepta una caída de tensión máxima del 3%.

Circuitos de fuerza (motores, enchufes): Generalmente se acepta una caída de tensión máxima del 5%. En algunos casos, la caída total desde el punto de suministro hasta el equipo final no debe exceder el

5%.

Protección contra Cortocircuitos: El conductor debe ser capaz de soportar la corriente de cortocircuito durante el tiempo que tarda la protección (disyuntor, fusible) en actuar, sin que se produzca una temperatura excesiva que dañe el aislamiento o el propio conductor.

Criterio: Se verifica que la sección calculada sea suficiente para disipar el calor generado por un cortocircuito en un tiempo determinado. La fórmula general es:

$$S \ge K \times Icc \times t, \tag{13}$$

donde:

Icc: Valor eficaz de la corriente de cortocircuito en amperios.

t: Tiempo de actuación de la protección en segundos.

K: Constante que depende del material del conductor y el tipo de aislamiento.

Proceso de Cálculo de la Sección

El proceso para calcular la sección de un conductor generalmente implica los siguientes pasos:

Determinar la Potencia (P) y Tensión (U) del Circuito: Conocer la carga total que alimentará el conductor y la tensión de suministro.

Calcular la Intensidad Nominal (I): Usando las fórmulas de potencia mencionadas anteriormente.

Seleccionar la Sección Preliminar por Intensidad Admisible: Consultar tablas de fabricantes o normativas que indiquen la intensidad máxima admisible para diferentes secciones de cable, considerando el tipo de aislamiento y método de instalación. Se elige la sección inmediatamente superior a la corriente calculada.

Verificar la Caída de Tensión: Con la sección preliminar elegida, se calcula la caída de tensión en el circuito. Si excede los límites permitidos por la normativa, se debe aumentar la sección del conductor hasta que la caída de tensión sea aceptable. Este es a menudo el factor determinante en largas distancias.

Verificar la Protección contra Cortocircuitos: Confirmar que la sección elegida es suficiente para soportar las corrientes de cortocircuito en el tiempo de actuación de las protecciones. Si no lo es, se deberá aumentar la sección.

Considerar Otros Factores:

Factor de Potencia (cosφ): Es importante para el cálculo de la corriente y la caída de tensión en circuitos de corriente alterna.

Número de Conductores Agrupados: Si varios cables discurren juntos, se aplican factores de corrección para reducir su capacidad de corriente debido al aumento de la temperatura.

Temperatura Ambiente: Se aplican factores de corrección si la temperatura ambiente es significativamente diferente a la temperatura de referencia de las tablas.

Tipo de Conductor (Cobre o Aluminio): El cobre tiene mayor conductividad que el aluminio, lo que significa que para la misma corriente se requiere una sección menor de cobre.

Normativa Ecuatoriana

En Ecuador, la referencia principal para las instalaciones eléctricas es el Código Eléctrico Nacional (CEN), que se basa en gran medida en el National Electrical Code (NEC) de Estados Unidos. Las empresas eléctricas distribuidoras y la Agencia de Regulación y Control de la Electricidad (ARCONEL) también emiten normativas y guías complementarias.

Es fundamental consultar la última versión del CEN y las normativas específicas de la empresa distribuidora de la zona (por ejemplo, EEQ para Quito) para asegurar el cumplimiento. Estas normativas específican:

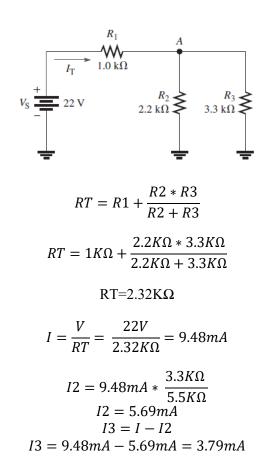
Límites de caída de tensión para diferentes tipos de circuitos y longitudes (ej., 3% para iluminación, 5% para fuerza).

Tablas de capacidad de corriente para distintos tipos y calibres de cables, considerando factores como el tipo de aislamiento, la temperatura ambiente y el método de instalación.

Requisitos para la protección contra sobrecargas y cortocircuitos.

Consideraciones específicas para instalaciones residenciales, comerciales e industriales.

En resumen, el cálculo de la sección de conductores no es una fórmula única, sino un proceso interactivo que considera múltiples factores y criterios normativos para garantizar la seguridad y eficiencia de la instalación eléctrica. Siempre es recomendable consultar a un profesional calificado para el diseño y cálculo de instalaciones eléctricas complejas.



Ejercicio Resuelto

Encuentre la corriente a través de R2 y de R3 en la figura 24.

Figura 24:

Conexión serie y paralelo de resistencias.

Guía de Práctica Técnica: Resistencias en circuito serie – paralelo.

Objetivo

Comprender cómo se comportan las resistencias eléctricas en configuraciones de circuito serie y paralelo mediante la construcción de circuitos simples, evaluando la variación de voltaje y corriente.

Materiales Necesarios

- 3 resistencias de diferentes valores (por ejemplo: 100Ω , 220Ω , 330Ω)
- 1 fuente de alimentación (puede ser una batería de 9V o adaptador USB con terminales)
- 1 multímetro (para medir voltaje y corriente)
- Cables de conexión
- Protoboard o base de cartón perforado
- Cinta aislante

Pasos para la Construcción de los circuitos.

Circuito en Serie

- 1. Conecta las 3 resistencias en línea (extremo con extremo) sobre el protoboard.
- 2. Une los extremos del arreglo a la fuente de alimentación: positivo al primer extremo, negativo al último.
- 3. Usa el multímetro para medir el voltaje total entre los extremos y el voltaje en cada resistencia.
- 4. Mide también la corriente total del circuito.
- 5. Registra tus observaciones sobre cómo se distribuye el voltaje y cómo se mantiene constante la corriente.

Circuito en Paralelo

- 1. Coloca las 3 resistencias en ramas separadas, conectando todos sus extremos positivos a un punto común y todos sus negativos a otro punto común.
- 2. Une estos dos puntos comunes a la fuente de alimentación.
- 3. Mide el voltaje en cada resistencia y la corriente que circula por cada rama.
- 4. Compara la corriente total con la suma de las corrientes individuales.
- 5. Anota tus observaciones sobre cómo se distribuye la corriente y cómo el voltaje se mantiene constante.

UNIDAD 3: ELEMENTOS UTILIZADOS EN LAS INSTALACIONES ELÉCTRICAS.

Conductores y sus tipos.

Los conductores eléctricos son componentes fundamentales en toda instalación eléctrica, ya que se encargan de transportar la corriente desde la fuente de energía hasta los puntos de consumo. Su funcionamiento está basado en el movimiento de electrones libres a través de materiales con baja resistencia eléctrica. El conductor ideal debe poseer alta conductividad, buena resistencia mecánica, flexibilidad, resistencia a la corrosión y estabilidad térmica. Entre los materiales más utilizados se encuentran el cobre y el aluminio, aunque existen también aleaciones específicas para aplicaciones industriales.

Los conductores se pueden clasificar de acuerdo con distintos criterios. Según su estructura física y se dividen en:

Conductor sólido: compuesto por un único hilo metálico, suele utilizarse en instalaciones fijas y en distancias cortas donde no se requiere flexibilidad.

Conductor multifilar o trenzado: conformado por varios hilos finos entrelazados. Este tipo ofrece mayor flexibilidad y es útil para instalaciones en las que hay movimiento o vibración.

En función del tipo de aislamiento, los conductores se dividen en:

Aislados: están recubiertos con materiales como PVC (policloruro de vinilo), XLPE (polietileno reticulado), EPR (caucho etileno-propileno), entre otros. Este aislamiento protege al usuario de posibles descargas eléctricas y resguarda el conductor de agentes externos.

Desnudos: sin recubrimiento aislante, se utilizan principalmente en redes de distribución aérea o en conexiones a tierra.

En cuanto a su aplicación, existen conductores diseñados específicamente para instalaciones residenciales, comerciales, industriales o subterráneas, los cuales deben cumplir con normas técnicas que aseguren su desempeño y seguridad. Entre estas se destacan la IEC 60228, que clasifica los conductores por clase de flexibilidad, y las normas INEN 2169 y NEC, que establecen los parámetros de instalación, calibre y condiciones ambientales, en la figura 24 se observa la diferencia entre los diferentes tipos de conductores.

Figura 25: Clasificación de los cables en función de su estructura

La correcta selección de un conductor no solo depende de la corriente que debe transportar, sino también de factores como la caída de tensión admisible, el tipo de carga, la temperatura del entorno, la longitud del circuito y el método de instalación (empotrado, aéreo, enterrado). También se debe verificar que los conductores cuenten con certificación de calidad y rotulación adecuada, indicando su sección, tensión nominal y tipo de aislamiento.

En términos prácticos, una mala elección del conductor puede provocar pérdidas por efecto Joule, sobrecalentamiento, deterioro del aislamiento y riesgo de incendios. Por ello, es imprescindible realizar cálculos eléctricos precisos y utilizar herramientas como las tablas de capacidad de corriente admisible, disponibles en los reglamentos técnicos vigentes.

Ductos y sus tipos.

Los ductos eléctricos, también conocidos como canalizaciones, son elementos esenciales en las instalaciones eléctricas, ya que permiten proteger, guiar y organizar los conductores durante su tendido. Su función principal es garantizar la seguridad física de los cables, evitar daños mecánicos o químicos, facilitar el mantenimiento, y permitir futuras ampliaciones o modificaciones en el sistema eléctrico, en la figura 26 se puede apreciar los diferentes tipos de ductos.

FIGURA 26.

Los ductos se clasifican en varios tipos según su forma, material y características de instalación:

Ductos metálicos: fabricados en acero galvanizado, aluminio o acero inoxidable. Ofrecen alta
resistencia mecánica y protección contra fuego. Son recomendados para instalaciones industriales o

lugares donde se requiere una protección reforzada. Deben estar correctamente conectados a tierra para evitar acumulación de potenciales peligrosos.

Ductos no metálicos (PVC o polietileno): más livianos y fáciles de instalar. Ofrecen buena resistencia a la humedad y a la corrosión. Son ampliamente utilizados en aplicaciones residenciales y comerciales. No conducen electricidad, por lo que no requieren puesta a tierra, pero sí deben instalarse según condiciones ambientales establecidas.

Ductos flexibles: utilizados en espacios reducidos o de difícil acceso, donde se requiere adaptar la forma del conducto al entorno. Pueden ser metálicos o plásticos, y deben cumplir con requisitos de protección mecánica y térmica.

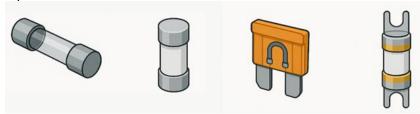
Canaletas superficiales: se instalan sobre muros o cielos, permitiendo el tendido de cables sin necesidad de romper superficies. Son utilizadas en oficinas, laboratorios y lugares donde se requiere facilidad de acceso para mantenimiento.

Bandejas porta cables: estructuras abiertas que soportan grandes volúmenes de conductores en instalaciones industriales. Permiten ventilación y visualización directa del cableado, facilitando la inspección periódica.

El diseño y selección del ducto adecuado dependen de factores como la cantidad y tipo de conductores, el entorno (interior, exterior, húmedo, corrosivo), la temperatura ambiente, las cargas mecánicas esperadas y el grado de protección IP requerido. También es indispensable considerar la compatibilidad con los elementos de fijación, el tipo de soporte estructural y la facilidad de acceso para instalación o mantenimiento.

Las normas internacionales como la IEC 61386 y locales como la INEN 2484 regulan las especificaciones técnicas de los ductos, incluyendo pruebas de resistencia al impacto, compresión, flexión, propagación de la llama y envejecimiento por exposición UV. Su instalación debe seguir las buenas prácticas eléctricas, como evitar empalmes dentro del ducto, respetar radios mínimos de curvatura y asegurar la continuidad del recorrido sin obstrucciones.

En conclusión, tanto los conductores como los ductos forman el sistema nervioso de una instalación eléctrica. Su selección, instalación y mantenimiento adecuados no solo garantizan el funcionamiento



eficiente del sistema, sino también la protección de las personas y los bienes, conforme a los estándares de seguridad eléctrica exigidos en el ámbito técnico profesional.

Fusibles.

Los fusibles son dispositivos eléctricos de protección contra sobrecorrientes que operan mediante la fusión de un conductor interno cuando la corriente excede un valor preestablecido. Su función principal es proteger conductores y equipos contra daños provocados por cortocircuitos o sobrecargas prolongadas. Están formados por un cuerpo dieléctrico, una cápsula de material cerámico o vidrio, y un elemento fusible metálico, generalmente de aleación de estaño, cobre o plata, en la figura 27 se muestra los diferentes tipos de fusibles.

FIGURA 27. Tipos de fusibles

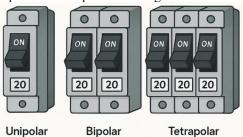
Los fusibles pueden clasificarse en función de diversos parámetros. Según su capacidad de interrupción, existen fusibles de baja capacidad y de alta capacidad de ruptura (HRC), siendo estos últimos adecuados para ambientes industriales. En función de su curva de respuesta, se tienen fusibles de acción rápida, que se funden casi inmediatamente ante una sobre corriente, y de acción retardada, que toleran corrientes transitorias como las que ocurren durante el arranque de motores eléctricos.

También existen clasificaciones según su forma física (tipo cartucho, tipo tapón) y uso (residencial, industrial, automotriz, etc.).

La correcta selección de un fusible implica considerar el tipo de carga, la corriente nominal del circuito, la corriente de cortocircuito disponible y las condiciones de instalación. Además, los fusibles deben ser compatibles con los portafusibles y cumplir con normativas como la IEC 60269 e INEN correspondientes. En el mantenimiento, debe verificarse la integridad del cuerpo del fusible, la continuidad del filamento y su correcta inserción en la porta fusible. En caso de reemplazo, se debe

emplear un nuevo fusible del mismo tipo y capacidad nominal, nunca uno de mayor amperaje para evitar riesgos de incendio.

Interruptor termomagnético


El interruptor termomagnético es un dispositivo esencial en sistemas eléctricos de baja tensión, diseñado para proteger los circuitos frente a sobrecargas y cortocircuitos. Funciona mediante un mecanismo combinado: el disparo térmico, que responde a incrementos sostenidos de temperatura generados por sobre corrientes leves, y el disparo magnético, que actúa de forma instantánea ante corrientes de cortocircuito elevadas. Ambos mecanismos interrumpen automáticamente la continuidad del circuito para evitar daños en cables y equipos.

Este tipo de interruptor se clasifica según la curva de disparo, que indica su sensibilidad ante picos de corriente. Las curvas B, C y D son las más utilizadas: la curva B es apta para cargas resistivas, como iluminación; la curva C para cargas mixtas, como motores pequeños; y la curva D para cargas altamente inductivas, como compresores o grandes motores trifásicos. También se fabrican en versiones monopolares, bipolares, tripolares y tetrapolares, adaptándose a las configuraciones monofásicas y trifásicas de cada instalación.

Para su correcta selección, se debe considerar la corriente nominal del circuito, el tipo de carga, el nivel de cortocircuito disponible y la compatibilidad con el sistema de puesta a tierra. Además, es importante revisar periódicamente su funcionamiento, asegurarse de que las conexiones estén firmes y libres de corrosión, y que no existan signos de sobrecalentamiento en sus terminales. Los interruptores termomagnéticos están normalizados por organismos como la IEC (norma IEC 60898) y deben cumplir con las especificaciones del RETIE y el NEC según el país. En la figura 28 se puede observar los diferentes tipos de interruptores termomagnéticos.

FIGURA 28.

Tipos de interruptor termomagnético

Interruptor diferencial.

El interruptor diferencial, también conocido como disyuntor diferencial o RCD (Residual Current Device), es un elemento de protección eléctrica que actúa ante fallas de aislamiento, desconectando el circuito cuando detecta una diferencia entre la corriente que entra y la que sale por los conductores activos. Esta diferencia indica que parte de la corriente se está desviando hacia tierra, lo que puede representar un riesgo de electrocución o incendio.

Los diferenciales más comunes tienen una sensibilidad de 30 mA, valor considerado seguro para la protección de personas. También existen dispositivos de 100 mA o 300 mA, utilizados para la protección de instalaciones completas o en casos donde se busca prevenir incendios por fugas mayores. En instalaciones modernas se recomienda utilizar diferenciales de tipo A, capaces de detectar corrientes de fuga con componentes continuas, propias de electrodomésticos electrónicos y cargadores. Los diferenciales tipo B detectan también fugas de corriente continua pura, siendo necesarios en sistemas fotovoltaicos o estaciones de carga de vehículos eléctricos.

Es fundamental que los diferenciales se prueben regularmente mediante el botón "test" incorporado, asegurando que el mecanismo de desconexión está operativo. Además, deben instalarse en serie con un interruptor termomagnético, ya que no brindan protección frente a sobrecargas o cortocircuitos. Su instalación es obligatoria en baños, cocinas, lavaderos y otras zonas húmedas según la normativa internacional.

Supresor de transientes.

Los supresores de transientes, también llamados protectores contra sobretensiones transitorias (SPD - Surge Protective Devices), son dispositivos diseñados para proteger las instalaciones eléctricas y los equipos sensibles contra picos de tensión momentáneos. Estos picos pueden generarse por descargas atmosféricas (rayos), conmutaciones de red, arranques de motores o fallas en transformadores.

Aunque su duración es extremadamente breve (microsegundos), su magnitud puede causar daños severos en componentes electrónicos, PLC, variadores de frecuencia, computadores y electrodomésticos.

Existen tres tipos de supresores de acuerdo con la norma IEC 61643:

Tipo 1: se instala aguas arriba del sistema, en el punto de entrada de la acometida, y es capaz de derivar descargas directas de rayo.

Tipo 2: se coloca en tableros secundarios para protección general de la instalación contra sobretensiones inducidas.

Tipo 3: se instala cerca de los equipos terminales, como computadoras o televisores, y tiene una capacidad de descarga menor, pero una alta sensibilidad.

Un sistema de protección integral debe contemplar la instalación en cascada de estos tres niveles. La conexión a tierra es esencial para su correcto funcionamiento. La calidad del sistema de puesta a tierra afecta directamente la eficacia del SPD. Los modelos modernos incorporan señalización luminosa que indica su estado operativo y contactos auxiliares que permiten su monitoreo remoto. Su mantenimiento implica la verificación periódica de su integridad y la comprobación del estado de la tierra. En la figura 30 se muestra los diferentes tipos de supresores de transientes.

FIGURA 10. Supresor de transientes

Tablero de Distribución Principal (TDP).

El Tablero de Distribución Principal (TDP) constituye el núcleo de toda instalación eléctrica, ya que es el punto central donde se recibe la energía eléctrica proveniente de la acometida y se distribuye hacia los distintos circuitos derivados o secundarios. Este tipo de tablero concentra los dispositivos de protección, seccionamiento y medición de la energía, por lo que su diseño, construcción y ubicación son elementos críticos dentro de la infraestructura eléctrica de cualquier edificio o instalación industrial.

El TDP está conformado por varios componentes clave: interruptores principales (termo-magnéticos o de potencia), barras colectoras de cobre o aluminio, transformadores de corriente para la medición, instrumentos de visualización (voltímetros, amperímetros, medidores de energía), supresores de sobretensiones, bornes de salida y dispositivos de protección diferencial. En instalaciones industriales de mediana y gran escala también pueden incluir relés de protección, controladores de energía reactiva y seccionadores de aislamiento. En la figura 31 se observa los diferentes tipos de tableros de distribución.

FIGURA 11.
Tablero de distribución

Desde el punto de vista normativo, estos tableros deben cumplir con especificaciones técnicas establecidas por la norma IEC 61439, la cual regula la construcción y ensayo de conjuntos de baja tensión. Esta norma exige pruebas de resistencia mecánica, térmica, de cortocircuito y compatibilidad electromagnética, garantizando la seguridad del sistema en condiciones normales y de falla. Además, se debe contemplar el grado de protección IP (frente a polvo y humedad), el sistema de ventilación (natural o forzada), y las dimensiones necesarias para permitir el mantenimiento y expansión futura del sistema.

En cuanto a la instalación, el TDP debe ubicarse en un lugar seco, ventilado, accesible únicamente a personal técnico calificado y debidamente señalizado. Es recomendable que se monte sobre estructuras firmes, con espacio frontal y lateral suficiente para maniobras seguras, según lo estipulado en los reglamentos eléctricos locales. La conexión a tierra del gabinete y de las barras debe ser verificable y cumplir con los requisitos de resistencia exigidos por la normativa vigente.


Centro de Cargas.

El centro de cargas es un tipo de tablero secundario que tiene como función principal distribuir la energía eléctrica a los distintos circuitos terminales o de uso final dentro de una vivienda, oficina o local comercial. A diferencia del TDP, el centro de cargas generalmente no incluye medición ni control centralizado, sino que está compuesto por un número determinado de interruptores termomagnéticos (breakers) encargados de proteger individualmente cada circuito.

Su estructura incluye una barra de neutro, una barra de puesta a tierra, riel DIN para montaje de interruptores, carcasa metálica o plástica con grado de protección IP adecuado, y en muchos casos, una puerta con visor. En sistemas monofásicos residenciales, el centro de cargas suele contar con 4 a 16 espacios para breakers. En instalaciones trifásicas puede incorporar subtableros para distribución por fases equilibradas.

La correcta planificación de un centro de cargas requiere considerar aspectos como la demanda máxima esperada, la cantidad y tipo de cargas (iluminación, tomacorrientes, electrodomésticos, aire acondicionado), el calibre de los conductores y la coordinación de protecciones. También se deben contemplar protecciones diferenciales para áreas húmedas y supresores de transientes para circuitos críticos. En la figura 32 se puede observar los diferentes tipos de centros de carga.

FIGURA 12. Centros de carga

En su instalación, el centro de cargas debe montarse a una altura estándar (entre 1,40 m y 1,80 m), en un lugar accesible y protegido del polvo, la humedad y el acceso no autorizado. La rotulación clara de cada circuito, así como el equilibrio de cargas por fase en sistemas trifásicos, son aspectos esenciales tanto para la seguridad como para la eficiencia del sistema. Finalmente, su mantenimiento periódico debe incluir verificación de aprietes, estado de los dispositivos de protección y limpieza general.



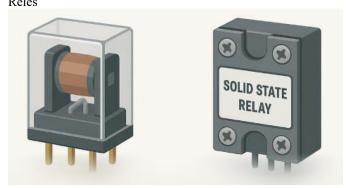
Protecciones residenciales Interruptores y pulsadores

Los interruptores y pulsadores son dispositivos fundamentales en el manejo manual y automático de circuitos eléctricos. Su función principal es permitir o interrumpir el paso de corriente en un circuito, ya sea de forma permanente o momentánea, dependiendo del tipo de aplicación. Aunque a simple vista parezcan elementos sencillos, su diseño, selección y aplicación responden a principios eléctricos, mecánicos y ergonómicos que garantizan la funcionalidad y seguridad del sistema.

Los interruptores son dispositivos de conmutación que permanecen en la posición seleccionada hasta ser cambiados manualmente. Se clasifican en unipolares, bipolares o tripolares, según el número de polos que controlan, y pueden tener una, dos o más posiciones (por ejemplo, ON/OFF, o conmutados). Se utilizan en iluminación, corte de fuerza de motores, seccionamiento de tableros, entre otros. Los pulsadores, en cambio, son dispositivos de contacto momentáneo: permanecen activos solo mientras son presionados. Son esenciales en circuitos de mando de arranque-paro de motores, señalización y control de procesos automatizados. En la figura 33 se muestre los diferentes tipos de interruptores y pulsadores residenciales.

FIGURA 33. Protecciones residenciales

Existen diferentes configuraciones de contactos, como normalmente abiertos (NA), normalmente cerrados (NC), o combinaciones NA/NC. En instalaciones industriales es común utilizar pulsadores iluminados, que permiten visualizar el estado del sistema, así como pulsadores de emergencia tipo seta, que cumplen con normas de seguridad como la ISO 13850. Los selectores giratorios y los interruptores de enclavamiento añaden funcionalidades adicionales, permitiendo cambiar entre modos de operación como automático/manual o local/remoto.



La correcta instalación y mantenimiento de estos dispositivos incluye la verificación de conexiones firmes, limpieza de contactos, y verificación de funcionamiento. Deben seleccionarse considerando su corriente nominal, tensión de aislamiento, tipo de montaje (superficial, empotrado, modular), y su grado de protección IP frente a polvo y humedad. La norma IEC 60947-5-1 regula las características de funcionamiento, pruebas y seguridad de estos dispositivos, y es de cumplimiento obligatorio en entornos industriales y comerciales.

Relés.

Los relés son dispositivos electromecánicos o electrónicos que permiten abrir o cerrar contactos eléctricos mediante una señal de control, generalmente de bajo voltaje. Constituyen la base de numerosos sistemas de control industrial puesto que como puede observarse en la figura 34 permiten accionar cargas de mayor potencia o múltiples salidas desde una señal de mando débil. Su versatilidad y variedad los hacen indispensables en tableros eléctricos, automatización de procesos, sistemas de protección, temporización y enclavamiento.

FIGURA 34. Relés

Un relé electromecánico clásico consta de una bobina que, al ser energizada, genera un campo magnético que atrae una armadura móvil, accionando uno o más contactos. Estos pueden ser NA, NC o combinados, y permiten comandar circuitos de fuerza o control. Existen también relés temporizados, que incorporan retardos a la conexión o desconexión; relés térmicos, que protegen motores contra sobrecargas; y relés de sobrecorriente, tensión, nivel o secuencia de fases. Más recientemente, los relés de estado sólido (SSR) han ganado protagonismo en aplicaciones donde se requiere conmutación rápida, silenciosa y sin desgaste mecánico.

En sistemas de automatización, los relés se integran con contactores, PLC, sensores y actuadores, configurando circuitos lógicos que controlan procesos industriales. Es común encontrar relés de enclavamiento, que mantienen activado un circuito sin necesidad de mantener energizada la bobina, y relés auxiliares, que amplifican señales o duplican contactos. Los relés programables (PR), por su parte, permiten la implementación de lógicas básicas sin necesidad de un PLC completo, y se utilizan en sistemas de control de pequeña escala.

Para garantizar su funcionamiento adecuado, los relés deben seleccionarse considerando la tensión y corriente de activación de la bobina, la capacidad de los contactos, la compatibilidad con cargas inductivas o capacitivas, y las condiciones ambientales (temperatura, vibración, humedad). El mantenimiento preventivo incluye verificación de estado de los contactos, limpieza interna y comprobación de aislamiento. Los relés están normados por la IEC 61810, que establece los requisitos de seguridad, durabilidad y pruebas de funcionamiento.

Acometidas.

La acometida eléctrica representa un componente esencial en cualquier sistema de suministro de energía, ya que constituye el tramo de conexión entre la red pública de distribución y la instalación interna del usuario final. Su correcta planificación, instalación y mantenimiento garantizan la seguridad eléctrica, la eficiencia energética y la continuidad del servicio. Este sistema no solo debe cumplir con los requisitos técnicos de diseño, sino también con estrictas normativas nacionales e internacionales para evitar riesgos eléctricos y garantizar la calidad del suministro.

Las acometidas pueden clasificarse según su disposición física en aéreas y subterráneas. Las acometidas aéreas son utilizadas mayoritariamente en zonas rurales y residenciales por su bajo costo y facilidad de mantenimiento. En este tipo de acometida, los conductores se extienden desde el poste hasta el punto de conexión mediante cables aislados o desnudos, con soporte mediante ménsulas o abrazaderas. Las acometidas subterráneas, por otro lado, son más frecuentes en zonas urbanas, industriales o de alta densidad poblacional, ya que mejoran la estética del entorno y reducen el riesgo

de interrupciones por fenómenos meteorológicos. Estas acometidas requieren canalizaciones con ductos resistentes, registros eléctricos y protección mecánica adecuada, considerando además el drenaje de aguas y la accesibilidad para su inspección.

Desde el punto de vista técnico, el cálculo de una acometida eléctrica involucra la estimación de la demanda máxima, el análisis de la caída de tensión permisible y la selección adecuada del conductor, tomando en cuenta su material (cobre o aluminio), sección transversal y aislamiento. Además, se deben incluir dispositivos de protección contra sobrecorrientes como fusibles, interruptores termomagnéticos o cajas seccionadoras, dispuestos en gabinetes estancos y debidamente señalizados. La instalación debe considerar una correcta puesta a tierra, utilizando varillas o sistemas de electrodos, para garantizar la protección de las personas y equipos ante fallas de aislamiento o descargas atmosféricas.

Las normas aplicables a las acometidas incluyen el NEC (National Electrical Code), la IEC 60364, el RETIE (en Colombia) y las especificaciones del operador de red local. Estas normativas definen aspectos como las distancias mínimas de seguridad, los tipos de materiales permitidos, la altura de los conductores aéreos, las dimensiones de las canalizaciones subterráneas, así como los requisitos de inspección y pruebas. Adicionalmente, los sistemas de acometida deben contar con protecciones mecánicas frente a golpes, vibraciones, humedad y agentes químicos, especialmente en ambientes industriales o costeros.

En resumen, una acometida correctamente diseñada e instalada no solo asegura el funcionamiento eficiente del sistema eléctrico, sino que también protege a los usuarios, evita pérdidas económicas por fallas o cortes y facilita futuras expansiones o modificaciones de la instalación.

Medidores de energía eléctrica.

El medidor de energía eléctrica, también denominado contador, es el dispositivo encargado de registrar la cantidad de energía eléctrica consumida por un usuario en un periodo determinado. Esta medición se expresa generalmente en kilovatios-hora (kWh) y constituye la base sobre la cual se emite la facturación del servicio eléctrico. La evolución tecnológica ha transformado estos

dispositivos desde simples sistemas electromecánicos hasta sofisticados instrumentos digitales con capacidades de análisis, diagnóstico y comunicación remota.

Los medidores electromecánicos tradicionales operan mediante un disco giratorio que gira en proporción al consumo energético, transmitiendo el movimiento a un sistema de engranajes que acciona un contador numérico. Aunque robustos y confiables, estos medidores carecen de capacidad de almacenamiento de datos y no permiten el monitoreo remoto. Por esta razón, están siendo reemplazados progresivamente por medidores electrónicos, que utilizan sensores de corriente y voltaje junto con microcontroladores para medir, registrar y almacenar información detallada del consumo eléctrico. Estos permiten detectar anomalías, realizar lecturas más precisas y programar múltiples tarifas horarias.

La última generación corresponde a los medidores inteligentes o smart meters, los cuales no solo cuantifican el consumo energético, sino que también interactúan en tiempo real con el sistema de distribución eléctrica. A través de tecnologías como RF (radiofrecuencia), PLC (comunicación por línea de energía) o GPRS, estos medidores envían lecturas automáticas a los centros de control, alertan sobre fallas o intentos de manipulación y permiten acciones remotas como desconexión o reconexión del servicio. Asimismo, permiten a los usuarios monitorear su consumo en tiempo real, favoreciendo hábitos de consumo más eficientes y conscientes.

La instalación del medidor debe realizarse respetando estándares de altura (entre 1,50 y 1,80 m), en gabinetes protegidos contra lluvia, polvo y acceso no autorizado. Debe estar adecuadamente sellado por el proveedor de energía, y su conexión se realiza según el tipo de suministro (monofásico, bifásico o trifásico), respetando el código de colores y la polaridad. La calibración del medidor, su mantenimiento y la verificación de su precisión son responsabilidad del proveedor de energía o del organismo regulador correspondiente.

En términos normativos, los medidores deben cumplir con las especificaciones técnicas y de seguridad establecidas en las normas IEC 62052-11 (requisitos generales), IEC 62053-21/22/23 (medidores de clase 1 y 2, trifásicos y electrónicos), así como con las directrices de las autoridades de

regulación energética. Además, deben integrarse dentro del sistema de gestión energética del usuario cuando se utilicen sistemas de eficiencia energética o monitoreo industrial, como parte de las redes inteligentes (smart grids) que permiten una distribución más racional, segura y sostenible de la electricidad.

Guía de Práctica Técnica: Diseño E Implementación De Circuitos Eléctricos Básicos

Objetivo

Reconocer, clasificar y manipular los principales elementos utilizados en las instalaciones eléctricas domiciliarias e industriales, mediante la identificación física de conductores, ductos, protecciones y tableros, y la simulación de un montaje básico.

Materiales Necesarios

- Sección de cable sólido y cable multifilar (mínimo 30 cm cada uno)
- Muestras de ductos: metálico (galvanizado), PVC rígido, flexible corrugado
- Interruptor termomagnético (monopolar o bipolar)
- Fusible tipo cartucho
- Interruptor differencial (RCD)
- Supresor de transientes (SPD)
- Pequeño tablero de distribución (puede ser simulado en cartón o madera)
- Herramientas: destornillador, pelacables, cinta aislante
- Rotulador y etiquetas
- Manual técnico o fichas impresas de normas IEC o INEN

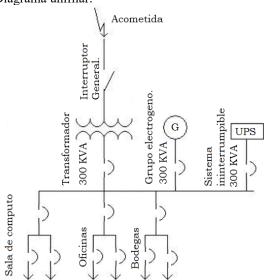
Pasos para la Construcción de un Sistema Simple de Generación.

- 1. Clasificación de Conductores
- 2. Reconocimiento y aplicación de ductos eléctricos
- 3. Montaje didáctico de protecciones eléctricas
- 4. Ensamble de un Centro de Cargas simulado
- 5. Acometida y Medición Energética (simulada)
- 6. Evaluación de dispositivos de control

UNIDAD 4: ESQUEMAS ELÉCTRICOS Y PRÁCTICAS BÁSICAS.

Esquemas y diagramas.

Diagrama Unifilar.


Representación simplificada de una instalación eléctrica en la que se utiliza una sola línea para mostrar los conductores activos (fase, neutro y tierra se asumen). Ideal para visualizar la estructura general del sistema eléctrico.

Es un diagrama que, mediante líneas individuales y símbolos gráficos, muestra el trayecto de un circuito o sistema de circuitos, y los componentes que lo conforman.

En otras palabras, es una representación simplificada de un sistema eléctrico que utiliza una sola línea para mostrar cómo se conectan los distintos elementos—como transformadores, interruptores, generadores y cargas—sin detallar cada fase del sistema. Es ideal para visualizar el flujo de energía, identificar componentes clave y facilitar el diseño, mantenimiento o análisis de instalaciones eléctricas.

En la figura 35 se muestra un ejemplo sobre los diagramas unifilares.

Figura 35: Diagrama unifilar.

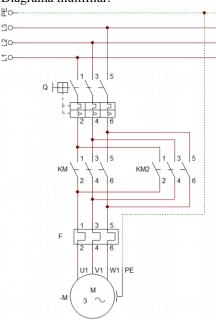


Diagrama multifilar.

Representa cada conductor individualmente, incluyendo fase, neutro y tierra. Se usa cuando se necesita precisión en el cableado, especialmente en instalaciones trifásicas o con muchas cargas sensibles. En la figura 36 se representa un diagrama multifilar.

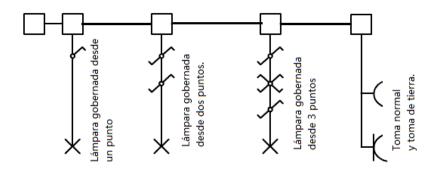
Figura 36: Diagrama multifilar.

Es decir, un diagrama multifilar es una representación gráfica en la que se muestran todos los conductores de un circuito eléctrico mediante líneas individuales, junto con los dispositivos conectados, sus interconexiones y detalles funcionales.

A diferencia del diagrama unifilar, el multifilar representa cada conductor por separado, lo que permite visualizar con precisión la trayectoria de cada cable, sus conexiones, y cómo interactúan los componentes eléctricos. Es especialmente útil en sistemas complejos donde se requiere un nivel de detalle mayor para instalación, mantenimiento o diagnóstico.

Este tipo de diagrama suele incluir:

- a) Fases, neutro y tierra por separado.
- b) Dispositivos de protección, maniobra y control.
- c) Numeración de bornes y referencias cruzadas.
- d) Simbología normalizada según IEEE o IEC.


Diagrama funcional o de funcionamiento.

Explica el comportamiento del sistema eléctrico según la lógica de control. Muy útil para automatismos, timbres, conmutaciones.

Ejemplo clásico: Interruptor conmutado para una lámpara desde 2 puntos.

bajo esta consideración el diagrama funcional es una representación gráfica en el cual se describe el comportamiento funcional de un sistema, mostrando cómo interactúan sus componentes para cumplir con los requisitos operativos. En la figura 37 se muestra un diagrama funcional para un sistema residencial.

Figura 37: Diagrama funcional.

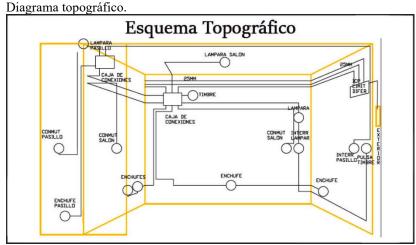
En otras palabras, este tipo de diagrama no se enfoca en el cableado físico ni en la disposición espacial, sino en cómo fluye la información o la energía entre los bloques funcionales del sistema. Es ideal para entender el propósito de cada parte del sistema y cómo se relacionan entre sí.

Las características de este tipo de diagramas son:

- a) Representa funciones o procesos, no componentes físicos.
- b) Utiliza bloques para cada función y líneas con flechas para mostrar el flujo de señales o energía.
- c) Puede incluir entradas, salidas, retroalimentación y control.
- d) Es útil en etapas de diseño conceptual, documentación técnica y análisis de sistemas.

Diagrama topográfico

Plano que representa la disposición física real de los elementos en el espacio. Usado para ubicar luminarias, interruptores y tomacorrientes sobre el plano arquitectónico.


En si es una representación gráfica en perspectiva o planta que muestra la ubicación física y espacial de los componentes eléctricos dentro de una instalación, incluyendo trayectorias de cableado, equipos y estructuras.

Este tipo de diagrama se utiliza para:

- a) Visualizar la disposición física de los elementos eléctricos.
- b) Mostrar rutas de cableado en relación con el entorno (paredes, pisos, techos).
- c) Facilitar la instalación y mantenimiento en campo.

Se apoya en simbología unifilar y multifilar, pero con enfoque espacial. Es común en planos de obra civil, subestaciones, plantas industriales y edificios. En la figura 38 se muestra el ejemplo de una diagramación topográfica.

Figura 38:

En conclusión, es una representación gráfica que permiten identificar la ubicación de equipos eléctricos en relación con factores ambientales, accesibilidad, seguridad y cumplimiento normativo.

Plano eléctrico.

Un plano eléctrico es una representación gráfica en el cual se describe la disposición física y funcional de los componentes eléctricos en una instalación, cumpliendo con los estándares de seguridad, protección ambiental y eficiencia operativa establecidos por esta organización.

Los requisitos a tomar en cuenta en un plano eléctrico son:

 a) Ubicación y clasificación de gabinetes eléctricos según condiciones ambientales (agua, polvo, corrosión, explosión).

- b) Identificación de equipos con simbología estandarizada.
- c) Diseño seguro de instalaciones eléctricas industriales y comerciales.
- d) Protección del personal y equipos mediante envolventes adecuados.
- e) Mostrar la ubicación física de los dispositivos eléctricos.
- f) Incluir clasificaciones NEMA (como NEMA 1, 4X, 12) para cada gabinete o envolvente.
- g) Representar rutas de cableado, canalizaciones y puntos de conexión.
- h) Cumplir con los requisitos de ventilación, sellado, resistencia térmica e impacto según el entorno.

Plano del Cuadro de Mando y Protección.

Es una representación gráfica detallada que muestra la disposición física y funcional de los dispositivos de protección, control y distribución de energía en una instalación eléctrica. Este plano debe cumplir con los requisitos técnicos y de seguridad establecidos por el REBT y puede incorporar criterios de clasificación ambiental NEMA para los envolventes.

Contenido técnico mínimo:

- a) Interruptor general
- b) Interruptor diferencial
- c) Breakers por circuito
- d) Etiquetado

Ejemplo práctico:

Tablero con alimentación de 220V, con 1 diferencial de 40A y breakers de 10A a 32A según la carga. Incluye riel DIN, borneras, canaletas.

Plano de instalación eléctrica.

Un plano de instalación eléctrica es una representación gráfica que describe la disposición física, funcional y técnica de los componentes eléctricos en una instalación, siguiendo convenciones estandarizadas para garantizar claridad, seguridad y cumplimiento normativo.

En el marco de la norma IEEE Std 315, este tipo de plano debe incluir:

- Simbología gráfica normalizada para representar dispositivos como interruptores, tomas, luminarias, tableros, etc.
- b) Trayectorias de cableado y conexiones entre componentes.
- c) Designaciones de referencia para cada elemento del sistema.
- d) Información técnica como niveles de tensión, tipo de corriente, protección, y capacidad de carga.

Su propósito principal es:

- a) Facilitar el diseño, instalación y mantenimiento de sistemas eléctricos.
- b) Servir como documento técnico para verificación normativa, licencias y auditorías.
- c) Garantizar la seguridad eléctrica y la correcta operación del sistema.

Este plano puede combinar elementos de diagramas unifilares, multifilares y topográficos, dependiendo del nivel de detalle requerido.

Finalmente, sobre este plano se dibujan los puntos eléctricos y recorridos de cableado. Y debe incluir:

- a) Altura de colocación
- b) Simbología estandarizada
- c) Número de circuitos

Plano de trazado de las canalizaciones.

Se define como dibujo técnico que muestra por dónde pasarán los ductos, bandejas, tuberías o canaletas.

Consideraciones:

- a) Longitudes máximas
- b) Radios de curvatura
- c) Accesibilidad para mantenimiento

En definitiva, un plano de trazado de canalizaciones es una representación gráfica que muestra la ruta física prevista para los conductores eléctricos, incluyendo los elementos de protección y soporte como tubos, bandejas, ductos y registros, conforme a las normas de diseño y simbología establecidas por la IEEE Std 315.

Este plano debe:

- a) Indicar el tipo de canalización (conduit, bandeja, electrocanal, etc.).
- b) Mostrar la trayectoria desde el origen (cuadro de mando) hasta los puntos de consumo.
- c) Incluir dimensiones, materiales y métodos de instalación.
- d) Representar simbólicamente los cambios de dirección, uniones, curvas y derivaciones.

Este plano es esencial para:

- a) Guiar la instalación física de los sistemas eléctricos.
- b) Verificar el cumplimiento normativo.
- c) Facilitar el mantenimiento y ampliaciones futuras.

Aplicación en instalaciones eléctricas.

Dimensionamiento de Protecciones residenciales

El dimensionamiento de protecciones residenciales consiste en determinar las características eléctricas adecuadas de los dispositivos de protección (como disyuntores, fusibles y diferenciales) para garantizar la seguridad, continuidad del servicio y protección de personas y equipos en una instalación doméstica.

Según la IEEE Std 242 (IEEE Buff Book) y la IEEE Std 315, este proceso implica:

- a) Identificar la corriente nominal de cada circuito.
- b) Aplicar factores de demanda, simultaneidad y seguridad.
- c) Seleccionar dispositivos que actúen correctamente ante sobrecargas, cortocircuitos y fallas a tierra.
- d) Asegurar la coordinación selectiva entre protecciones para evitar desconexiones innecesarias.

La NEMA, a través de sus estándares para envolventes y dispositivos eléctricos, establece que:

- a) Los dispositivos de protección deben estar clasificados para el entorno: para interiores secos, para ambientes húmedos o corrosivos).
- Deben cumplir con requisitos de accesibilidad, resistencia térmica y compatibilidad electromagnética.

 c) El dimensionamiento debe considerar la capacidad de interrupción, el tiempo de respuesta y la curva de disparo del dispositivo.

Parámetros clave en el dimensionamiento:

Parámetro Descripción técnica

Corriente nominal (In): Valor de corriente continua que soporta el circuito

Factor de demanda (Fd): Porcentaje de uso simultáneo de las cargas

Factor de seguridad (Fs): Margen adicional para evitar disparos intempestivos

Capacidad de interrupción: Máxima corriente que puede cortar el dispositivo

Curva de disparo: Tiempo de respuesta ante diferentes niveles de falla

Este proceso es esencial para evitar sobrecargas, incendios, electrocuciones y daños en equipos, y debe realizarse conforme a las normas locales e internacionales.

Estudio de cargas residenciales.

El estudio de cargas residenciales es el proceso técnico mediante el cual se identifican, cuantifican y analizan las cargas eléctricas presentes en una vivienda, con el fin de diseñar una instalación segura, eficiente y conforme a las normas, este estudio permite:

- a) Determinar la demanda máxima y el perfil de consumo.
- b) Clasificar las cargas como lineales o no lineales.
- c) Evaluar el impacto de distorsión armónica, factor de potencia y variaciones de tensión.
- d) Estimar la capacidad de los conductores, protecciones y transformadores.

Se realiza mediante:

- a) Censo de carga: listado de equipos con su potencia nominal.
- b) Aplicación de factores de simultaneidad y demanda.
- c) Análisis de curvas de carga horarias y comportamiento dinámico.

Mas sin embargo la normativa NEMA, a través de sus guías de diseño y clasificación de equipos, establece que el estudio de cargas debe considerar:

a) Clasificación ambiental de los dispositivos.

b) Compatibilidad electromagnética y protección contra sobretensiones.

c) Selección adecuada de envolventes y canalizaciones según el entorno residencial.

Los parámetros clave en el estudio

Parámetro Descripción técnica

Potencia instalada: Suma de todas las cargas conectadas

Potencia demandada: Carga máxima esperada en condiciones normales

Factor de simultaneidad: Porcentaje de uso simultáneo de las cargas

Factor de demanda: Relación entre demanda máxima y potencia instalada

THD (Distorsión armónica): Nivel de contaminación armónica en tensión y corriente

Este estudio es esencial para:

a) Evitar sobrecargas y caídas de tensión.

b) Seleccionar protecciones adecuadas.

c) Optimizar el diseño eléctrico y prever futuras ampliaciones.

Cálculo de caídas de voltaje en acometidas.

El cálculo de caídas de voltaje en acometidas es el proceso mediante el cual se determina la pérdida de tensión eléctrica que ocurre cuando la energía fluye desde el punto de suministro hasta el punto de consumo, a través de los conductores de acometida. Este cálculo es esencial para garantizar:

- a) El correcto funcionamiento de los equipos eléctricos.
- b) La eficiencia energética del sistema.
- c) La seguridad operativa de la instalación.

La caída de voltaje se produce por la resistencia e impedancia de los conductores, y se calcula considerando:

- a) Longitud del conductor.
- b) Sección transversal del cable.
- c) Material del conductor (cobre o aluminio).
- d) Corriente de carga.

- e) Factor de potencia.
- f) Tipo de canalización (PVC, acero, etc.).

Según la norma NEMA, a través de sus normas para envolventes y canalizaciones, establece que:

- a) Las acometidas deben diseñarse para minimizar la caída de voltaje, especialmente en ambientes exigentes.
- b) Se deben considerar clasificaciones NEMA para los gabinetes y canalizaciones involucradas
- c) El cálculo debe garantizar que la tensión en el punto de consumo no se reduzca por debajo del 90% del valor nominal, salvo en condiciones especiales.

Este análisis es clave para evitar problemas como luces tenues, sobrecalentamiento de cables, fallos en motores o pérdida de eficiencia.

Utilidad de la puesta a Tierra.

La puesta a tierra es un sistema diseñado para conectar eléctricamente los equipos y estructuras a un potencial de referencia (la tierra), con el objetivo de garantizar la seguridad de las personas, la protección de los equipos y la estabilidad del sistema eléctrico. Se fundamenta en:

- a) Limitar tensiones peligrosas durante fallas eléctricas.
- b) Evitar descargas eléctricas por contacto indirecto.
- c) Facilitar la operación de protecciones como disyuntores y diferenciales.
- d) Estabilizar el potencial eléctrico del sistema frente a perturbaciones externas (rayos, sobretensiones).
- e) Reducir interferencias electromagnéticas en sistemas sensibles.

Además, la IEEE establece criterios para el diseño de mallas de puesta a tierra, cálculo de tensiones de paso y contacto, y evaluación de resistencias del sistema para garantizar que las condiciones sean seguras en todo momento.

Aunque la norma NEMA no define directamente la utilidad de la puesta a tierra, establece requisitos para los gabinetes, envolventes y canalizaciones que forman parte del sistema, considerando:

- a) Clasificación ambiental para asegurar que los componentes resistan humedad, polvo, corrosión o impacto.
- b) Compatibilidad electromagnética para evitar interferencias en equipos electrónicos.
- c) Protección contra sobretensiones y descargas atmosféricas.

En conjunto, las normas IEEE y NEMA aseguran que la puesta a tierra no solo sea funcional, sino también segura, duradera y adaptada al entorno físico.

Normativas y códigos eléctricos para instalaciones residenciales y comerciales

¿Qué son las normativas y códigos eléctricos?

Son conjuntos de reglas técnicas, criterios de seguridad y estándares de calidad que regulan el diseño, instalación, operación y mantenimiento de sistemas eléctricos en edificaciones. Su objetivo principal es proteger a las personas, los bienes y el medio ambiente, garantizando instalaciones seguras, eficientes y duraderas.

Normativas internacionales relevantes

- IEEE (Institute of Electrical and Electronics Engineers) Establece estándares técnicos como:
 - o IEEE Std 315: Simbología eléctrica.
 - o IEEE Std 141: Diseño de sistemas de potencia.
 - o IEEE Std 80: Puesta a tierra en subestaciones.
 - o IEEE Std 242: Protección eléctrica.
- NEMA (National Electrical Manufacturers Association) Define clasificaciones ambientales para envolventes y equipos eléctricos:
 - o NEMA 1, 4X, 12, etc., según condiciones de humedad, polvo, corrosión o impacto.
 - O Guías para selección de canalizaciones, gabinetes y dispositivos de protección.

Normativas nacionales (Ecuador)

- CUEN (Código Único Eléctrico Nacional) Regula:
 - o Diseño y construcción de instalaciones eléctricas.
 - o Protección contra sobrecargas, cortocircuitos y descargas eléctricas.
 - o Instalaciones en ambientes peligrosos.

- o Inspecciones, mantenimiento y operación segura.
- NEC (Norma Ecuatoriana de la Construcción)3 Incluye capítulos específicos sobre:
 - o Instalaciones electromecánicas.
 - o Acometidas, tableros, canalizaciones y sistemas de puesta a tierra.
 - o Iluminación, tomacorrientes y eficiencia energética.

Aplicación en instalaciones residenciales y comerciales

Tipo de instalación	Requisitos clave según normativa
Residencial:	Protección contra contactos, selectividad, eficiencia energética,
	clasificación NEMA de envolventes.
Comercial:	Capacidad de carga, compatibilidad electromagnética, seguridad
	contra incendios, puesta a tierra robusta

Estas normativas trabajan en conjunto para asegurar que cada instalación eléctrica sea segura, funcional y conforme a la ley.

NEC Instalaciones Eléctricas.

Objetivo general.

Establecer los requisitos mínimos de diseño, ejecución y seguridad para instalaciones eléctricas de bajo voltaje en edificaciones residenciales, comerciales e industriales.

Ámbitos de aplicación

- a) Viviendas unifamiliares y multifamiliares.
- b) Locales comerciales, industriales y asistenciales.
- c) Ampliaciones o modificaciones de instalaciones existentes.

Principales componentes regulados

Sección Contenido técnico

Requisitos para acometidas aéreas y subterráneas,

15.1.2 Acometidas:

obras civiles asociadas.

Sección Contenido técnico

15.1.3 Centros de transformación: Tipos de cámaras, torres y transformadores pedestal.

Grupos electrógenos, sistemas de emergencia y

15.1.4 Sistemas de autogeneración:

clasificación.

Materiales, equipos, distancias mínimas,

15.1.5 Exigencias generales:

identificación.

15.1.6 Tableros: Clasificación, construcción, distribución y medición.

15.1.7 Alimentadores: Dimensionamiento, neutro, capacidad de corriente.

15.1.8 Canalizaciones: Tipos de conductores, bandejas, tubos, registros.

15.1.9 Protección contra voltajes peligrosos: Contactos directos e indirectos, sobretensiones.

15.1.10 Puesta a tierra: Diseño, materiales, tensiones de paso y contacto.

Requisitos por tipo de ambiente (vivienda, comercio,

15.1.11 Iluminación y tomacorrientes:

salud).

Seguridad y eficiencia

- Prohíbe el uso del suelo como retorno de corriente en condiciones normales.
- Exige protección contra contactos eléctricos, sobre corrientes y sobrevoltajes.
- Promueve la eficiencia energética y el uso de alumbrado de emergencia.

Documentos complementarios

PDF oficial del Capítulo 15 de la NEC o los capítulos normativos publicados por el MIDUVI.

Normativa de la Empresa Eléctrica Quito.

Objetivo general

Establecer criterios técnicos, procedimientos y especificaciones para el diseño, ejecución y fiscalización de redes eléctricas dentro del área de servicio de la EEQ, garantizando seguridad, eficiencia y compatibilidad normativa.

Estructura normativa de la EEQ

La normativa se organiza en tres partes principales:

Parte A – Guía para Diseño de Redes de Distribución

- Código de símbolos eléctricos y convenciones gráficas.
- Dimensiones y escalas de planos.
- Metodología general de diseño.
- Parámetros técnicos: niveles de tensión, capacidad de carga, distancias mínimas.
- Seccionamiento y protecciones.
- Redes soterradas y aéreas.

Parte B – Unidades de Propiedad y Construcción

- Montajes tipo de estructuras, cámaras y equipos.
- Separaciones mínimas entre elementos.
- Identificación de fases y circuitos.
- Conexiones a tierra y alumbrado público.

Parte C – Especificaciones Técnicas de Equipos y Materiales

- Transformadores de distribución.
- Elementos de protección y seccionamiento.
- Conductores desnudos y aislados.
- Materiales para redes soterradas y obra civil.
- Clasificación de postes, herrajes y accesorios.

Requisitos clave para instalaciones

Elemento técnico Requisito según EEQ

Simbología eléctrica: Basada en IEEE Std 315 y código EEQ propio

Canalizaciones: Trazado conforme a planos tipo EEQ

Diseño según IEEE Std 80 y especificaciones

Puesta a tierra:

EEQ

Construcción, etiquetado y protección

Tableros de distribución:

normalizada

Elemento técnico Requisito según EEQ

Alumbrado público: Normas específicas de montaje y conexión

Planos, diagramas unifilares y "as built"

Documentación técnica:

obligatorios

Seguridad en Circuitos e Instalaciones Eléctricas.

Concepto general

La seguridad en circuitos e instalaciones eléctricas se refiere al conjunto de medidas técnicas, normativas y operativas destinadas a prevenir riesgos eléctricos, proteger la vida humana, evitar daños materiales y garantizar la operación confiable de los sistemas eléctricos.

Normativas internacionales clave

Norma / Código Enfoque principal

IEEE Std 1584: Evaluación de riesgos por arco eléctrico y energía incidente.

Seguridad en instalación, operación y mantenimiento de sistemas

IEEE C2 (NESC):

eléctricos.

IEC 60364: Diseño y verificación de instalaciones eléctricas de baja tensión.

NFPA 70 (NEC): Requisitos mínimos para instalaciones eléctricas seguras.

NFPA 70E: Seguridad eléctrica en el lugar de trabajo.

Gestión de seguridad y salud ocupacional, incluyendo riesgos

ISO 45001:

eléctricos.

Principios técnicos de seguridad

- Protección contra contactos directos e indirectos: uso de aislamiento, barreras, dispositivos diferenciales.
- Puesta a tierra efectiva: para desviar corrientes de falla y estabilizar el sistema.
- Protección contra sobre corrientes y cortocircuitos: mediante disyuntores, fusibles y selectividad.
- Evaluación de riesgos de arco eléctrico: cálculo de energía incidente y uso de EPP.

- Diseño conforme a carga y demanda: para evitar sobrecalentamientos y caídas de tensión.
- Inspección y mantenimiento periódico: para garantizar la integridad del sistema.

Aplicación práctica

Estas normativas se aplican en:

- Instalaciones residenciales: protección de personas y equipos domésticos.
- Instalaciones comerciales e industriales: continuidad operativa, seguridad laboral y cumplimiento legal.
- Sistemas críticos: hospitales, centros de datos, subestaciones.

La seguridad eléctrica no es solo una exigencia técnica, sino una responsabilidad ética y legal.

Efectos de la Electricidad.

Concepto general

Los efectos de la electricidad sobre el cuerpo humano y los sistemas industriales pueden ser beneficiosos o peligrosos, dependiendo de cómo se controlen. En el contexto de la seguridad eléctrica, estos efectos se analizan para prevenir lesiones, daños materiales y fallos operativos, aplicando normas que regulan el diseño, uso y mantenimiento de instalaciones eléctricas.

Efectos sobre las personas (según IEEE Std 80 y NFPA 70E)

Tipo de efecto Descripción técnica

Paso de corriente por el cuerpo humano; puede causar

Choque eléctrico:

fibrilación ventricular, tetanización o paro respiratorio.

Descarga de alta energía entre conductores; genera calor

Arco eléctrico:

extremo, luz intensa y presión explosiva.

Quemaduras: Por contacto directo o radiación térmica del arco eléctrico.

Caídas y golpes: Movimientos involuntarios al recibir una descarga.

Efectos psicológicos: Ansiedad, estrés postraumático tras incidentes eléctricos.

La NFPA 70E establece límites de energía incidente y uso obligatorio de EPP (guantes, ropa ignífuga, gafas, etc.) para proteger al trabajador.

Efectos sobre instalaciones industriales (según IEC 60364 y IEEE Std 141)

- Sobrecalentamiento de conductores: por mal dimensionamiento o sobrecarga.
- Fallas en equipos electrónicos: por distorsión armónica o sobretensiones.
- Incendios eléctricos: por cortocircuitos no protegidos.
- Interferencias electromagnéticas: que afectan sistemas de control y comunicación.
- Paradas no programadas: por disparos intempestivos de protecciones mal calibradas.

La IEC 60364 regula el diseño seguro de instalaciones de baja tensión, y la IEEE Std 1584 permite calcular la energía incidente para evaluar riesgos de arco eléctrico.

Normas internacionales aplicables

Norma / Código Enfoque principal

IEEE Std 80: Seguridad en sistemas de puesta a tierra.

IEEE Std 1584: Evaluación de riesgos por arco eléctrico.

NFPA 70 / 70E: Instalaciones seguras y protección del trabajador.

IEC 60364: Diseño y verificación de instalaciones eléctricas.

ISO 45001: Gestión de seguridad y salud ocupacional.

OIT – Seguridad eléctrica Guías para inspección y prevención de riesgos eléctricos.

La electricidad es una herramienta poderosa, pero también puede ser letal si no se controla adecuadamente. Por eso, las normas internacionales no solo definen cómo instalar, sino cómo proteger.

Tipología del riesgo eléctrico.

Concepto general

La tipología del riesgo eléctrico se refiere a la clasificación de los distintos peligros asociados al uso, manipulación o presencia de electricidad, considerando sus efectos sobre las personas, los equipos y el entorno. Esta clasificación permite identificar, evaluar y controlar los riesgos para implementar medidas de protección eficaces.

Clasificación técnica según normas internacionales

Contacto directo:

Contacto indirecto:

Tipo de riesgo eléctrico Descripción técnica

Ocurre cuando una persona toca partes activas en tensión (cables,

terminales, etc.).

Se produce al tocar partes metálicas accidentalmente energizadas por

fallos de aislamiento.

Descarga de alta energía entre conductores; genera calor extremo, luz

Arco eléctrico:

intensa y presión explosiva.

Paso de corriente por el cuerpo humano que puede causar lesiones Electrocución:

graves o muerte.

Incrementos momentáneos de tensión que dañan equipos o Sobretensiones:

instalaciones.

Conexión accidental entre conductores de diferente potencial; puede Cortocircuitos:

causar incendios.

Provocados por fallos eléctricos en presencia de materiales Incendios y explosiones:

inflamables.

Acumulación de carga que puede generar chispas peligrosas en

Electricidad estática: ambientes sensibles.

Campos electromagnéticos Exposición prolongada a CEM puede afectar la salud en ciertos

(CEM): entornos laborales.

Exponen partes energizadas, aumentando el riesgo de contacto directo

o indirecto.

Exceso de corriente que sobrecalienta conductores y equipos,

Sobrecarga de sistemas:

generando riesgo térmico.

Normas aplicables

Fallas de aislamiento:

• IEEE Std 80: Seguridad en sistemas de puesta a tierra.

• IEEE Std 1584: Evaluación de riesgos por arco eléctrico.

- NFPA 70 / 70E: Instalaciones seguras y protección del trabajador.
- IEC 60364: Diseño seguro de instalaciones eléctricas.
- ISO 45001: Gestión de seguridad y salud ocupacional.
- OIT Seguridad eléctrica: Guías para inspección y prevención de riesgos eléctricos.

Esta tipología permite establecer estrategias de prevención, selección de equipos de protección personal (EPP) y diseño seguro de instalaciones.

Sistemas de Protección Clase A.

Los sistemas de protección Clase A son aquellos diseñados para proteger instalaciones eléctricas contra sobre corrientes, cortocircuitos y sobretensiones severas, con una respuesta rápida y directa, garantizando la desconexión inmediata del circuito afectado.

Estos sistemas están vinculados principalmente a la seguridad humana y la protección de equipos sensibles, siendo obligatorios en ambientes críticos, como hospitales, laboratorios, salas de control o instalaciones industriales con alta densidad tecnológica. En la Tabla 1 se muestra las aplicaciones típicas de los sistemas de protección de clase A.

TABLA 1. Aplicaciones típicas de los sistemas de protección de clase A.

Área Protegida	Elemento de Clase A	Justificación Técnica
Hospitales / quirófanos	Interruptores diferenciales	Protección directa a personal médico y pacientes
Centros de datos / redes críticas	DPS tipo 1 y 2 combinados	Evita daños por transitorios severos en equipos
Laboratorios con electrónica fina	Protección con curva tipo B	Alta sensibilidad sin sacrificar continuidad

Característica de un sistema de protección Clase A.

- Alta sensibilidad de disparo: reaccionan ante mínimas variaciones que superen los límites admisibles.
- **Desconexión automática instantánea**: suelen operar en menos de 0.1 segundos ante una falla grave.
- Normas aplicables: referenciados en normas como IEEE 242 (Buff Book) y criterios de NEMA, relacionados con selectividad y coordinación.

Componentes comunes:

- Interruptores automáticos con curva de disparo tipo B o C.
- Dispositivos de protección contra sobretensiones (DPS tipo 1).
- Diferenciales de alta sensibilidad (30 mA o menos).

Sistemas de Protección Clase B.

Los sistemas de protección Clase B están diseñados para ofrecer una respuesta escalonada y selectiva ante fallas eléctricas, principalmente sobrecargas prolongadas y cortocircuitos no críticos. Su objetivo es proteger equipos y mantener la continuidad operativa, activando solo cuando la falla alcanza niveles moderados.

Estos sistemas priorizan la coordinación con otros niveles de protección (Clase C o A), lo que les permite funcionar de manera discriminativa y con retardo temporal controlado, evitando desconexiones innecesarias.

Característica de un sistema de protección Clase A:

- Curvas de disparo moderadas: generalmente tipo C o D, con mayor tolerancia ante picos de corriente.
- **Protección escalonada**: trabajan en conjunto con protecciones Clase A y C para evitar desconexión completa.
- Normas aplicables: IEEE 1015 (Red Book), IEEE 242, NEMA PB-1.

Componentes comunes:

- Interruptores termo-magnéticos tipo C.
- Relés de sobrecarga térmica programables.
- Protecciones diferenciales retardadas (>100 mA).

En la Tabla 2 se puede observar las aplicaciones típicas de las protecciones de clase B.

TABLA 2. Aplicaciones típicas de los sistemas de protección de clase B.

Área Protegida	Elemento de Clase B	Justificación Técnica
Subestaciones secundarias	Interruptores tipo C con	Discriminación entre fallas
Subestaciones secundarias	coordinación	leves y severas
Sistemas de iluminació	Relés térmicos ajustables	Protección ante sobrecarga sin
industrial	Refes termicos ajustables	interrupción total
Matanas trifásicas maguañas	Intermediate con exercise D	Evitan disparos por picos de
Motores trifásicos pequeños	Interruptores con curva tipo D	arranque momentáneos

Guía de Práctica Técnica: Realización de puesta a tierra.

Objetivo

Comprender y aplicar los principios fundamentales de la puesta a tierra eléctrica, mediante la construcción de un sistema simple utilizando componentes accesibles, evaluando su efectividad en función de seguridad y continuidad eléctrica.

Materiales Necesarios

- Varilla de cobre o acero galvanizado de al menos 1.5 m de longitud (electrodo de puesta a tierra)
- Cable de cobre desnudo calibre 6 AWG o superior
- Abrazaderas metálicas (para unión entre cable y varilla)
- Multímetro digital (con función de resistencia)
- Agua salada (para mejorar la conductividad del terreno durante pruebas)
- Martillo o mazo
- Pala o herramienta para cavar

Pasos para la instalación de puesta a tierra.

- 1. seleccionar un lugar adecuado: alejado de estructuras metálicas y con suelo húmedo preferiblemente (zona de buen contacto eléctrico con el terreno).
- 2. Introducir la varilla de puesta a tierra verticalmente en el suelo con ayuda del mazo, dejando 10–15 cm expuestos para conexión.
- 3. Conectar el cable de cobre al electrodo utilizando abrazaderas, asegurando un contacto firme y libre de corrosión.
- 4. Extender el cable desde la varilla hasta el punto de conexión del sistema eléctrico (ej. gabinete, tablero general).
- 5. Verificar la continuidad eléctrica con el multímetro: mide la resistencia entre la varilla y el extremo del cable. El valor ideal debe ser menor a 25 ohmios según recomendaciones estándar (IEEE Std 142 e IEC 60364-5-54).
- 6. (Opcional): Humedecer el terreno con agua salada si el valor de resistencia está por encima de lo recomendado.
- 7. Registrar las observaciones sobre la resistencia, ubicación, calidad de conexión, y tiempo de instalación.

Proyecto final.

Tema: Diseño Eléctrico de un Edificio de Tres Plantas.

Objetivo de la práctica.

Construir e instalar un tablero de distribución eléctrica funcional y seguro, aplicando las normativas básicas de electricidad residencial, promoviendo el trabajo técnico y el orden en las conexiones.

Materiales y herramientas

- Caja para tablero (plástico o metálico)
- Interruptores termomagnéticos unipolares (mínimo 3)
- Interruptor general termomagnético bipolar
- Cable THHN 12 AWG (negro, blanco, verde)
- Barra de neutro y tierra
- Canaletas, tornillos, fijaciones
- Pelacables, destornilladores, alicate
- Multímetro
- Etiquetas o marcador
- Elementos de seguridad (guantes, gafas)

Procedimiento paso a paso.

- 1. Esquematizar en papel el diseño del tablero (mínimo 3 circuitos).
- 2. Fijar la caja del tablero en una superficie estable.
- 3. Instalar las barras de neutro y tierra dentro de la caja.
- 4. Colocar el interruptor general en la parte superior del tablero.
- 5. Instalar los interruptores termomagnéticos para cada circuito.
- 6. Conectar los cables de alimentación (fase, neutro y tierra).
- 7. Distribuir correctamente los cables hacia los interruptores.
- 8. Verificar el orden y apriete de conexiones.
- 9. Etiquetar cada breaker según su función.

- 10. Usar el multímetro para verificar continuidad, voltaje y seguridad.
- 11. Cerrar el tablero, energizar y realizar pruebas finales.

Autoevaluación

I. REACTIVO DE OPCIÓN MÚLTIPLE

Indicador esencial de evaluación: Conoce los principios básicos de circuitos eléctricos.

- 1. ¿Cuál de las siguientes afirmaciones sobre los conductores eléctricos es correcta?
 - A) Los conductores sólidos son más adecuados para instalaciones móviles.
 - B) Los conductores trenzados tienen menor flexibilidad que los sólidos.
 - C) Los conductores aislados están diseñados para evitar pérdidas de voltaje.
 - D) La selección de un conductor depende, entre otros factores, de la caída de tensión admisible.
- 2. En relación con los ductos eléctricos, seleccione la opción más precisa:
 - A) Los ductos de PVC requieren puesta a tierra obligatoriamente.
 - B) Las canaletas se utilizan principalmente en instalaciones industriales pesadas.
 - C) Las bandejas portacables permiten inspección visual directa y buena ventilación.
 - D) Los ductos metálicos no ofrecen protección frente al fuego.
- 3. ¿Cuál es el principal riesgo de seleccionar un conductor de menor sección al requerido?
 - A) Aumento en la velocidad de la señal eléctrica.
 - B) Reducción de la capacidad térmica del transformador.
 - C) Sobrecalentamiento y riesgo de incendio por exceso de corriente.
 - D) Exceso de voltaje en los terminales de carga.
- 4. ¿Qué normativa establece la clasificación de conductores por su clase de flexibilidad?
 - A) IEC 61386
 - B) NEC Artículo 310

D)	INEN	2484
----	-------------	------

<i>D)</i> II.	ILII.	2404		
5. ¿C	uál d	de las siguientes buenas prácticas aplica durante la instalación de ductos eléctricos?		
A)	Real	lizar empalmes dentro del ducto para ahorrar espacio.		
B)	B) Omitir la rotulación de tramos ocultos.			
C)	Resp	petar radios mínimos de curvatura para evitar daños en el aislamiento.		
D)	Utili	izar el mismo tipo de ducto sin considerar el entorno.		
6. ¿Cuál	es la	principal fuente de generación eléctrica en el Ecuador a mediados del año 2025?		
	a.	Energía eólica.		
	b.	Energía térmica.		
	c.	Energía hidroeléctrica.		
	d.	Energía solar.		
7. ¿Que	é fen	ómeno físico permite que un panel solar genere electricidad?		
	a.	Inducción electromagnética.		
	b.	Efecto Joule.		
	c.	Efecto fotovoltaico.		
	d.	Conducción térmica.		
8. ¿C	uál d	e los siguientes materiales es un semiconductor combinado utilizado en la electrónica?		
	a.	Cobre.		
	b.	Plata.		
	c.	Silicio.		
	d.	Oro.		
9. ¿C	uál e	s la unidad básica utilizada para medir la corriente eléctrica?		
	a.	Voltio (V).		
	b.	Vatio (W).		
	c.	Amperio (A).		
	d.	Ohmio (Ω) .		

Referencias Bibliográficas

Alexander, C. K., & Sadiku, M. N. O. (2006). Fundamentos de circuitos eléctricos (3rd ed.). McGraw-Hill.

Hayt, W. H., Kemmerly Jack E., & Durbin, S. M. (2012). Análisis de circuitos en ingeniería (8th ed.). McGraw-Hill.

Dorf, R. C. (1992). Circuitos eléctricos: introducción al análisis y diseño. Alfaomega.

Boylestad, R. L., & Nashelsky, L. (2003). Electrónica: Teoría de circuitos y dispositivos electrónicos (8th ed.). Pearson Educación.

Floyd, T. L. (2007). Principios de circuitos eléctricos. Pearson Educación.

Carranza, H., & Martín, M. (2007). Sistemas eléctricos de potencia (2nd ed.). Librería y Editorial Alsina.

Grainger, J. J., & Stevenson, W. D. (1996). Análisis de Sistemas de Potencia. McGraw-Hill.

Glover, D., & Sarma, M. (2002). Power System Analysis and Design. Brooks/Cole.

Nasar, S. A. (1990). Teoría y Problemas de Máquinas Eléctricas y Electromecánicas. McGraw-Hill.

Say, M. G. (1983). Alternating Current Machines. Pitman.

Roldán Viloria, J. (1992). Motores Eléctricos. Accionamiento de Máquinas. 30 Tipos de Motores. Paraninfo.

Luque-Romera, F. (2022). Máquinas, Herramientas y Materiales de Procesos Básicos de Fabricación (2da ed.). Málaga: IC.

Mott, R. (2006). Diseño de Elementos de Máquinas. Edo. México: Pearson Educación.

Nayfeh, A., & Nayfeh, N. (2010). Analysis of the cutting tool on a lathe. *Nonlinear Dynamics*, 63, 395-416. doi:10.1007/s11071-010-9811-6

Onysko, O., Medvid, J., Panchuk, V., Rodic, V., & Barz, C. (2021). Geometric Modeling of Lathe Cutters for Turning High-Precision Stainless Steel Tapered Threads. *Advances in Design, Simulation and Manufacturing IV, IV*, 472-480. doi:10.1007/978-3-030-77719-7_47

Patel, H., & Chauhan, I. (2020). A study on Types of Lathe Machine and Operations: Review. *International Journal of Advance Research and Innovation*, 8(4), 286-291.

Roldán-Viloria, J. (2019). *Máquinas y Herramientas: Procesos y Cálculos Mecánicos*. Madrid: Paraninfo, S.A.

Virasak, L. (2019). Manufacturing Processes (1st ed.). Oregon: Open Oregon Educational Resources.

